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India’s power sector has a significant impact on the country’s development and climate change

mitigation efforts. Optimization of energy planning is therefore, key to achieving the overall planning

goals. The hierarchical multi-objective policy optimization is a policy-centric multi-level bottom-up

iterative approach, designed from a developing country perspective, utilizing the optimality principle of

dynamic programming. It is applied to the Indian power sector by grouping the strategies into three

portfolios, namely, power generation mix, demand side efficiency group and supply side efficiency

group. Each portfolio is optimized taking into account the objectives of cost minimization and

comprehensive risk and barrier reduction. The portfolios are further combined and optimized at a

higher level with respect to higher level objectives, namely, economic growth, energy equity, energy

security and climate sustainability. This paper focuses on the second level optimization utilizing data

envelopment analysis (DEA). Both the deterministic and stochastic variations have been analysed and

the results compared in respect of unrestricted as well as restricted weight models. The analysis shows

that weight-restricted stochastic DEA model is most appropriate for efficiency optimization of power

sector strategies. The methodology can be effectively used for energy planning in developing countries.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The importance of electricity sector in India in the context of
development and sustainability can hardly be overemphasised.
During 1994 to 2007, electricity sector in India projected the
highest compound annual growth rate of 5.6% among all other
sectors (INCCA, Ministry of Environment and Forests, India, 2010).
India has set an ambitious target of capacity addition of
100,000 MW for the 12th Five Year Plan (Planning Commission
of India, 2011). Optimization of energy strategies to achieve the
macro-economic objectives of planning becomes critical for a
developing country like India. Large-scale conversion to clean,
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perpetual, and reliable energy at low cost together with increased
energy efficiency are key strategies for solving the problems of
climate change, pollution, and energy insecurity (Jacobson and
Delucchi, 2011). Optimal generation planning including renew-
ables in the portfolio as well as optimal supply side and demand
side energy efficiency planning are, therefore, critical ingredients
to be incorporated into an effective sustainable energy develop-
ment paradigm.

The generation portfolio should incorporate renewables as
a key strategy for energy security and emissions reduction. As
increased scarcity of resources shifts (André and Smulders,
2004) technical change progressively towards energy-saving
technological change at the cost of total factor productivity
growth, energy efficiency sector has great potential in India.
However, improvements in energy efficiency will require
active market interventions to overcome barriers and to
zation of India’s power sector strategies using weight-restricted
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stimulate drivers (Reddy et al., 2009). Moreover, the actual
impact of energy efficiency measures will depend on the price
elasticity of demand.

We utilize the hierarchical multi-objective optimization fra-
mework (Vazhayil and Balasubramanian, 2012) for addressing the
strategy planning issues in the Indian power sector. It essentially
follows the dynamic programming approach where the complex-
ity of the problem is tackled by a ‘divide and conquer’ approach.
The optimization problem is divided into a number of sub-
problems at hierarchical levels. For optimization at each level,
objectives appropriate to that level are identified. As the policy
strategies combine into portfolios and move up the optimization
pyramid, the objectives of optimization get suitably modified in
synchronism. The strategies get optimized at different hierarch-
ical levels of objectives. After an entire cycle of optimization is
completed, iterative improvement incorporates feedback arising
on account of the chosen higher level objectives or corrections
due to the assumption of the monotonicity of the objective
function in dynamic programming. For the higher level optimiza-
tion of the power sector, efficiency optimization using DEA (Zhou
et al., 2008) is made use of. This paper focuses on the implemen-
tation of DEA and identifies appropriate model and presents the
results of comparison with alternatives.

The remainder of paper is organized as follows: Section 2
introduces the hierarchical multi-objective optimization model
for the Indian power sector. Next section introduces the DEA for
constant returns to scale (CRS) and variable returns to scale (VRS)
and discusses the evaluation of the input and output parameters
of the decision making unit (DMU). Section 4 introduces the
stochastic model of the DEA. Section 5 looks at the impact of
weight restrictions in DEA models. Results and conclusions are
presented in Section 6 and Section 7.
2. Optimization of Indian power sector

We consider a bi-level optimization algorithm for India’s
power sector. The objectives of optimization are selected based
on the approach to the 12th Five Year Plan as well as India’s
National Action Plan on Climate Change (PMCCC (Prime Minister’s
Council on Climate Change), India, 2009). The latter focuses on the
use of new strategies and technologies in key sectors. The
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Fig. 1. Hierarchical multi-objective

Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
stochastic data envelopment analysis. Energy Policy (2013), http://d
objectives of the first level optimization are project level para-
meters, namely, levelized cost and Comprehensive Risk-Barrier
Index (CRBI). CRBI is a composite index (Vazhayil and
Balasubramanian, 2012) capturing the joint influence of cost risks
as well as implementation barriers in energy projects. This index
has been designed in view of the fact that barriers exert a key
influence on project implementation in developing countries.
After grouping the power sector strategies into three portfolios,
namely, generation mix, demand side efficiency group and supply
side efficiency group, each portfolio is optimized using genetic
algorithm, for cost minimization and CRBI reduction. These
portfolios are further optimized at the second level using
weight-restricted stochastic data envelopment analysis. Optimi-
zation at each level is sequential (Fig. 1), taking into account the
optimality principle of dynamic programming.

For the optimization of the first level portfolios, portfolio
optimization methods (Markowitz, 1952; Steuer et al., 2005) are
utilized to get a number of near-optimal portfolios with minimum
cost and CRBI. The power generation portfolio consists of various
generation sources, namely, coal, natural gas, nuclear, hydro and
renewable energy sources, the proportion of which constitutes
the decision vector. Cost of conserved energy or of conserved fuel
and CRBI can be employed as optimization parameters for energy
efficiency strategies.

Analytic Hierarchy Process (Ramanathan, 2003), a widely used
decision making technique with its applications increasing expo-
nentially in recent times (Sipahi and Timor, 2010), can be used for
the evaluation of the barriers. The cost risks are estimated from
the standard deviations of the respective costs. In the Indian
scenario, we consider the barriers relating to land availability,
public policy, environmental clearance, infrastructure and
resource availability as well as grid connection and markets.

Objectives of optimization at the second level are: (i) economic
growth (ii) energy equity (iii) energy security and (iv) climate
sustainability. Economic growth is a key productivity criterion for
strategic policies. Energy equity is particularly relevant in the
context of developing countries since affordable modern energy is
key to improving living standards (Ekholm et al., 2010). Along
with growth and equity, energy policies must particularly take
into account energy security and climate sustainability. A meth-
odology to identify and assess the impact of climate policies on
energy security to guide policy making has been developed in
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Greenleaf et al. (2009). While some climate policies can reinforce
energy security, the same cannot be asserted about all the climate
policies and vice versa.

The first level optimization of the three sub-sectoral portfolios
using genetic algorithm gives the optimal strategy mix for all the
three portfolios. After the first level optimization is completed,
these optimal portfolios form inputs to the second level where the
relative proportions of these portfolios are determined by evalu-
ating their respective efficiencies with respect to the objectives of
second level. In this paper, we focus on this level of optimization
using DEA, which is described in detail below.
Fig. 2. Decision making unit inputs and outputs.
3. Data envelopment analysis

DEA is an important non-parametric method of measuring the
efficiency of multiple-input multiple-output DMUs. It has emerged
as a valid alternative to regression analysis (Ray, 2004). First
introduced in a seminal paper by Charnes et al. (1978), based on
the concept of frontier analysis, called CCR model, it has evolved into
a major analytical approach for decision making in assessing the
comparative efficiencies of DMUs (Emrouznejad et al., 2008). DEA
has been applied to organizations in various areas (Singh et al.,
2010; Beriha et al., 2011; Kumar, 2011; Watson et al., 2011). For
optimization of energy strategy portfolios at second and/or higher
levels, DEA is eminently suitable. Efficiencies are assessed in terms
of the ratio of the output function of objectives to that of the input
function of costs and barriers.

The efficiency measurement in DEA is of two types, namely,
overall technical efficiency and pure technical efficiency, the
latter being higher than the former. The CCR model of DEA
assumes CRS due to which the efficiency measurement of the
model is in terms of the overall technical efficiency (OTE). OTE can
be decomposed into two factors, namely, pure technical efficiency
(PTE) and scale efficiency (SE). The DEA model for VRS introduced
by Banker et al. (1984), called the BCC model evaluates PTE.

The inputs and outputs of DEA may be considered determi-
nistic or stochastic. Generally, inputs are stochastic in real situa-
tions. For the power sector portfolios, cost variable can be
considered either deterministic or stochastic. If considered sto-
chastic, the corresponding normalized risk value will be its
standard deviation. According to the nature of the variables, we
may employ deterministic or stochastic DEA. We illustrate both
these options for the power sector portfolios. Maximum efficiency
at the end of the second stage of optimization is further subjected
to iterative improvement using different combinations of input
portfolios to arrive at the global maxima of efficiency for the two-
stage optimization process.

The DEA model for each DMU (Banker et al., 1984) for VRS may
be stated as follows:

Max f 0 ¼
Xs

r ¼ 1

uryr0
�d

subject to
Xm
i ¼ 1

vixi0 ¼ 1

Xs

r ¼ 1

uryrj�
Xm
i ¼ 1

vixij�dr0 for j¼ 0,1,2,. . .,n

mr Ze for r¼ 1,2, . . .,k, viZe for i¼ 1,2,:::,m

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð1Þ

where e is a convenient small positive number (non-Archime-
dean) and d is unconstrained in sign. ur, vi are the output and
input weights, respectively of outputs yr and inputs xi, estimated
by the model. The suffix j represents the index of the DMU with
zero indicating the DMU under evaluation. If do0 in the optimal
solution, then decreasing returns to scale (DRS) hold at DMU0. For
Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
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d¼0 in the optimal solution, constant returns to scale (CRS) and
for d40, increasing returns to scale (IRS) hold at DMU0. Tsolas
(2011) analyzes PTE and SE, as constituent components of OTE,
using the DEA model for efficiency determination of bank
branches.

For the purpose of second stage optimization of power sector
strategy portfolios, each portfolio can be viewed as a DMU as
shown in Fig. 2.

The inputs to the DMU are cost, deterministic or stochastic,
and barriers which are considered deterministic. The outputs of
the DMU are key objectives relating to optimization of the
energy–economy–climate system, namely, economic growth,
energy equity, energy security and climate sustainability. These
are serious concerns for all countries and therefore reckoned as
over-arching objectives in the optimization paradigm. Each of
these macro objectives can be represented by suitable indicators
or proxy attributes.

For identifying the functional attributes of economic growth in
terms of DMU inputs, we use the decomposition of the growth
rate of India described in terms of the growth rates of private
consumption, investment, government consumption expenditure
and net exports. Based on the economic data from the World Bank
world development indicators during 1992–2003, Felipe et al.
(2008) derive this decomposition as follows:

G _DP¼ C=GDP
� � _Cþ I=GDP

� �_Iþ G=GDP
� � _Gþ X=GDP

� � _X� M=GDP
� � _M ð2Þ

¼ 0:662 _Cþ0:223 _Iþ0:118 _Gþ0:118 _X�0:128 _M ð3Þ

Growth can be connected to the portfolio shares and portfolio
outputs by calculating the investment share of the total cost of
the portfolio for producing, say, 100 units of electricity, govern-
ment share if any, net imports and total consumption cost. Total
consumption cost is calculated in terms of (Total
cost—investment costþcost of electricity output) for the portfo-
lio. Then, by using Eq. (3), the proxy attribute for growth can be
generated. An alternative is to use a suitable economic growth
model, say, Mankiw-Romer-Weil specification (Mankiw et al.,
1992).

In order to represent energy security in terms of related
indicators, we look at the key characteristics of an energy
portfolio. An assessment of energy security with reference to
the variety and balance aspects of the energy portfolio (Greenleaf
et al., 2009) can be made using the Shannon–Wiener Index
(SWI)¼�Spi ln pi or Herfindhal–Hirschmann Index (HHI)¼Spi

2

where pi represents the share of ith generation mode in the
generation mix. Since a lower value of HHI indicates higher
energy security and HHI varies between 0 and 1, we take (1-
HHI) as one of the indicators of energy security in this analysis.
For another indicator, we look at the impact of rebound effect on
energy security.
zation of India’s power sector strategies using weight-restricted
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Table 1
Carbon emissions for various energy technologies.

(Source: Authors’ estimates based on UK Parliamentary Office of Science and

Technology (2006), Weisser (2007)

CO2 emission for different energy technologies

Energy technology CO2 emission

Coal 800–1000 gCO2eq/kW he

Lignite 1100–1700 gCO2eq/kW he

Oil 700–800 gCO2eq/kW he

Natural gas 360–575 gCO2eq/kW he

Nuclear 0.74–1.3 gCO2eq/kWhe

Photovoltaic 43–73 gCO2eq/kW he

Wind on shore 8–30 gCO2eq/kW he

Wind off shore 9–19 gCO2eq/kW he

Hydro 2–9 gCO2eq/kW he

Biomass 35–99 gCO2eq/kW he
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Rebound effect (R) is defined (Guerra and Sancho, 2010) as
follows.

R¼ 1� actual energy savingsðAESÞ=potential energy savingsðPESÞ
� �

ð4Þ

Due to rebound effect, energy security is reduced for demand
side efficiency sources. This is on account of the fact that the
calculated savings may not be achieved in practice due to
increased consumption on realization of higher energy efficiency.
Therefore, energy security of an efficiency portfolio is propor-
tional to (1�R).

The rebound effect is proportional to the elasticity of energy
demand (Guerra and Sancho, 2010). It is as high as 50% to 80% for
developing economies like India (Roy, 2000) which may even be
over 100% depending on the price elasticity of energy demand. It
has therefore been concluded that the conservation efforts, unless
accompanied by corrective pricing policies, will be ineffective in
actually realizing the predicted efficiency improvement. For the
purpose of calculations, we take R¼0.75 for demand side effi-
ciency portfolio and R¼1.0 for the other portfolios.

A third factor to be taken into account for determining energy
security is the security dependency factor (d). For a generation
portfolio, the electricity production from the portfolio becomes
assured on commissioning of the project. For an efficiency
portfolio, on the other hand, the portfolio output of avoided
generation is achieved only when the project becomes opera-
tional on the output of the primary generation portfolio. If the
primary generation, transmission or utilization does not take
place as assumed, the output of efficiency portfolio cannot be
realized even if the project is commissioned. In other words,
efficiency portfolios are further downstream as compared to
generation portfolios and hence energy security index of effi-
ciency portfolios has to be discounted correspondingly. This
discounting is implemented through the security dependency
factor. For generation portfolio, we define this factor as unity
since the output of this portfolio depends only on implementation
of projects within the same portfolio. For efficiency portfolios,
since avoided generation depends on the primary output of the
existing generation/transmission system and the realization of
expected savings from the implemented efficiency projects, the
security dependency factor is given a value of 0.75. Taking into
account the impacts of portfolio spread, rebound effect and
dependency factor, we define the energy security index of a
portfolio as follows:

Energy security index¼ d 1�Rð Þ 1�
X

pi
2

� �
ð5Þ

As far as the energy equity objective is concerned, we generate
a proxy attribute for equity based on the twin criteria, namely,
government investment criterion (Brent et al., 2005) and the total
cost criterion. All the portfolios contribute to power generation or
avoided power generation. Therefore, on a comparative scale, if a
particular portfolio generates electricity without government
subsidy, at the same cost per unit as generated by another
portfolio with government subsidy, then the generation portfolio
without government subsidy is clearly preferable from the energy
equity angle. This is because the subsidy becomes available to
improve energy access, which will contribute to equity without
affecting overall electricity output. Hence upon a comparison of
various generation or avoided generation portfolios, less govern-
ment subsidy on the project will contribute to greater energy
equity. Further, energy equity is inversely related to the cost of
generation of a unit of energy since a lower cost facilitates greater
accessibility. This aspect can be further accentuated by a pro-
gressive energy pricing regime. Based on these considerations, it
Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
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is appropriate to define the proxy attribute for equity as follows:

Equity index¼ 100�percentage share of government subsidyð Þ=

cost of energy ð6Þ

For climate sustainability index, we use the carbon emission
data of different energy technologies (Table 1) and use the
negative of the portfolio emission with appropriate scaling as
the climate sustainability index.
4. Non-linear programming stochastic DEA model

If the input(s) or output(s) of a DMU is stochastic, the
optimization problem can be solved as a non-linear programming
problem. There are various approaches to include the stochastic
element into the efficiency analysis of DEA, namely, imprecise
DEA, bootstrapping, Monte Carlo simulation and chance con-
strained DEA (Dyson and Shale, 2010), Banker’s F tests, chance
constrained programming, Varian’s statistical test of cost mini-
mization and bootstrapping (Ray, 2004). Chance constrained
programming technique (Charnes et al., 1959) converts a linear
programming problem with stochastic variables to a non-linear
deterministic problem by suitably modifying the objective func-
tion to incorporate the stochastic element and changing the
constraints to ensure their satisfaction despite stochastic uncer-
tainty, with a specified confidence level. An attempt to use chance
constrained DEA for strategy selection is presented in Saen (2011)
along with a summary of strategy selection methods that include
intuitive models, analytical models, quantitative models and
blend intuitive and analytical models.

We employ the chance-constrained programming technique
for the stochastic variation of cost input to the DMU. The
optimization of the DMU can now be represented as a non-
linear programming problem to maximize the efficiency of the
DMU, namely, u1g0þu2e0þu3l0þu4s0

� �
= v1c0þv2b0ð Þ with all

inputs and outputs, except cost, considered deterministic (sym-
bols have their meanings given in Fig. 2). We use the inverted
utility function method to minimize the reciprocal of efficiency,
which makes the DEA model input oriented.

Let f 0 c,bð Þ ¼ v1c0þv2b0 be the input oriented function to be
minimized for the first DMU where c is the stochastic variable.
The corresponding output of the DMU is set equal to unity. Let
F(.) represent the cumulative probability density function of the
standard normal variable and si denote the value of the standard
normal variable at which F(si)¼pi, where pi represents the
confidence level.
zation of India’s power sector strategies using weight-restricted
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The mathematical formulation of the stochastic optimization
problem (Rao, 2010) for each DMU is as follows:

Min k1f 0þk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var f 0

� �q

where k1 and k2 are constants indicating

relative significance of the average value and its risk

subject to u1g0þu2e0þu3l0þu4s0 ¼ 1

hj ¼ u1gjþu2ejþu3ljþu4sj�v1cj�v2bj

hjþsi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var hj

� �q
r0 for each DMU with j¼ 0,1,2

vi,ur Ze, i¼ 1,2; r¼ 1,2,3,4

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð7Þ
5. Fixed weight and restricted weight DEA

It is important to determine clearly defined differential effi-
ciencies of the various portfolios under consideration, which
requires the DEA to fully rank the DMUs. Adler et al. (2002)
describe six general groups of ranking methods in DEA, namely,
cross-efficiency matrix, super-efficiency approach, benchmarking,
multivariate statistical techniques for computing weights, mea-
sure of inefficiency dominance and multi-criteria decision-mak-
ing models. Determination of common weights is an important
approach for the efficiency discrimination in DEA as against the
choice of weights by each DMU to maximize its efficiency leading
to non-differentiated efficiency sets. DEA with unrestricted
weights for each DMU maximizes the efficiency of the DMU often
under unrealistic input–output combinations based on the
assumption of substitutability of inputs/outputs. This makes the
clear ranking of the DMUs difficult. Yang et al. (2010) propose
determination of a set of common weights in the DEA efficiency
evaluation using multi-objective integer programming. Goal pro-
gramming method for common weights is described in Makui
et al. (2008). Two ranking methods using the concept of coeffi-
cient of variation among efficient DMUs with stochastic inputs
and outputs are described in Lotfi et al. (2010).

In the case of the power sector portfolios, the inputs are
distinct and they are not substitutable in an unrestricted manner.
So are the outputs. This leads to the requirement of restricting the
weights of the outputs within certain lower and upper bounds.
Weighting is also required to discriminate the various Decision
Making Units (DMUs) in terms of their efficiencies. It is possible to
generate the weighting scheme by means of the Analytic Hier-
archy Process or by expert judgement. The weighting chosen will
Table 2
Outputs and inputs for data envelopment analysis.

Portfolio Outputs

Growth Equity Energy security

Generation 0.41 0.11 0.46

Supply efficiency 0.31 0.04 0.43

Demand efficiency 0.28 0.85 0.11

Table 3
Optimal modal weights of CCR and BCC unrestricted weight deterministic DEA (Non-n

Portfolio CCR overall technical efficiency

(OTE)

BCC Pure technical efficiency

(PTE)

Scale

efficie

Generation 0.74 1.0 0.74

Supply

efficiency

1.0 1.0 1.0

Demand

efficiency

1.0 1.0 1.0

Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
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have impacts in terms of portfolio efficiencies, though the impact
of change among weighting schemes, namely unrestricted, fixed
or restricted weight schemes, is much higher compared to the
variations of weights within a particular scheme. We use expert
judgment for identifying lower and upper bounds of the outputs
depending on the relative significance of output parameters. The
inputs, namely, cost and barriers are combined in fixed propor-
tions with barrier weight equal to half of the cost weight, since in
the Indian context, project cost is the major determinant of
project viability. It may be noted that all inputs and outputs are
normalized values indicating proportions and the weights also
indicate proportions. Weight restrictions lead to clear ranking of
the portfolios in terms of efficiency.
6. Results

6.1. Inputs and outputs of the DMU

The inputs and outputs of the DMU obtained from a typical run
of the first level portfolio optimization are given in Table 2. All the
indices are normalized values. The overall efficiency is maximized
by minimizing the reciprocal of efficiency. For stochastic DEA, the
cost risks in the last column of Table 2 are used as standard
deviations of cost. For deterministic DEA, the corresponding
values are set to zero.

6.2. Efficiencies of unrestricted, fixed weight and restricted weight

deterministic DEA

The CCR and BCC efficiencies obtained using the unrestricted
weight DEA are given (Coelli, 1996) in Table 3. In these DEAs,
inputs and outputs are assumed substitutable, which is not the
case in most practical situations (Barnum and Gleason, 2008). It is
seen that the efficiencies of both supply side and demand side
portfolios are 100% due to greater flexibility of the assigned
weights. In the case of optimization of power sector portfolios,
the substitutability of outputs is possible to a limited extent. As
for the inputs of costs and barriers, a fixed proportion based on
their relative significance as determined by expert judgment,
seems to be ideal.

The inputs to the DEA procedure are normalized values. The
weighting methodology is based on the relative significance that
the policy maker assigns to the costs and barriers in policy
making. If the weights are restricted to be in fixed proportions,
Inputs

Climate index Cost Barrier Cost risk

0.12 0.63 0.38 0.43

0.44 0.28 0.20 0.26

0.44 0.09 0.42 0.31

egativity constraints on weights).

ncy

Nature of

transformation

Modal weight based on

OTE

Modal weight based

on PTE

Decreasing returns to

scale

0.27 0.33

Constant returns to

scale

0.36 0.33

Constant returns to

scale

0.36 0.33
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Table 4
Optimal modal weights of fixed weight deterministic DEA.

Portfolio Weighted

output

Weighted

input

CRS overall technical

efficiency (OTE)

VRS pure technical

efficiency (PTE)

Scale

efficiency

Nature of

transformation

Modal weight

based on OTE

Modal weight

based on PTE

Generation 0.98 2.85 0.344 0.361 0.951 Increasing returns

to scale

0.166 0.169

Supply

efficiency

0.97 1.33 0.729 0.774 0.942 Increasing returns

to scale

0.352 0.363

Demand

efficiency

1.03 1.03 1.0 1.0 1.0 Constant returns

to scale

0.482 0.468

Table 5
Optimal modal weights of restricted weight deterministic DEA.

Portfolio Weighted output Weighted input CRS overall technical

efficiency (OTE)

Modal weight based

on OTE

Generation 0.90 2.78 0.323 0.163

Supply efficiency 0.86 1.30 0.662 0.334

Demand efficiency 1.00 1.00 1.000 0.504

Table 6
Optimization parameters of restricted weight deterministic DEA.

Name Value Constraints Status Slack

Generation efficiency Constraint �1.88 h0r0 Not binding 1.88

Supply efficiency constraint �0.44 h1r0 Not binding 0.44

Demand efficiency constraint 0.00 h2r0 Binding 0

Demand efficiency Weighted output constraint 1.00 u1g2þu2e2þu3l2þu4s2 ¼ 1 Binding 0

Parameter weight equity 0.50 u2r0.75�u1 Not binding 0.35

Parameter weight energy security 0.70 u3r0.9�u1 Not binding 0.31

Parameter weight climate support 0.44 u4r0.4�u1 Not binding 0.01

Parameter weight equity 0.50 u2Z 0.1�u1 Not binding 0.39

Parameter weight energy security 0.70 u3Z0.3�u1 Not binding 0.37

Parameter weight climate support 0.42 u4Z 0.05�u1 Not binding 0.36

Table 7
Optimal modal weights of fixed weight stochastic DEA.

Portfolio Weighted

output

Weighted

input

CRS overall

technical efficiency

(OTE)

Modal

weight

based on

OTE

Generation 0.96 8.33 0.11 0.166

Supply efficiency 0.95 3.89 0.24 0.353

Demand efficiency 1.00 3.00 0.33 0.481

Table 8
Optimal modal weights of restricted weight stochastic DEA.

Portfolio Weighted

output

Weighted

input

CRS overall

technical

efficiency (OTE)

Modal weight

based on OTE

Generation 1.26 8.33 0.15 0.193

Supply efficiency 1.15 3.89 0.30 0.380

Demand efficiency 1.00 3.00 0.33 0.427
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the portfolios are ranked as shown in Table 4. For this case, the
ratio of output weights of growth, equity, energy security and
climate sustainability, based on expert judgment is 1:0.5:1:0.5,
respectively. The ratio of input weights for cost and barriers is
1:0.5. As in the unrestricted case, pure technical efficiencies are
equal to or greater than the overall technical efficiencies. How-
ever, since the scale efficiencies are very high, the differences are
only marginal. The results indicate that the proportion of power
generation by means of demand efficiency portfolio, supply
efficiency portfolio and new generation is 48:35:17 based on
overall efficiency and 47:36:17 based on pure technical efficiency.

Table 5 indicates the impact of the weight restrictions on the
outputs. The inputs are maintained with fixed proportion
weights. The weight restrictions are incorporated as constraints
in the LP model of Excel Solver. In the deterministic DEA, there is
only marginal difference in modal weights between fixed weight
Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
stochastic data envelopment analysis. Energy Policy (2013), http://d
and restricted weight options. The values of various parameters
and the details of constraints of the restricted weight determi-
nistic model are given in Table 6.

6.3. Efficiencies of fixed weight and restricted weight stochastic DEA

The optimal efficiencies assuming stochastic nature of cost as a
normally distributed random variable are shown in Tables 7 and
8. In the chance constrained stochastic option (Eq. (7)), we use the
value of si corresponding to a probability of 0.99 for the satisfac-
tion of the constraints (99% confidence level). The stochastic
formulation of the DEA results in a non-linear programming
problem solved by the Excel solver. Optimization parameters of
restricted weight stochastic DEA model are shown in Table 9. It is
seen that the normalized efficiencies (modal weights) are com-
parable to those of the deterministic DEA, both in the fixed weight
zation of India’s power sector strategies using weight-restricted
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Table 9
Optimization parameters of restricted weight stochastic DEA.

Name Value Constraints Status Slack

Generation efficiency constraint �4.37 h0r0 Not binding 4.365

Supply efficiency constraint �1.11 h1r0 Not binding 1.105

Demand efficiency Constraint 0.00 h2r0 Binding 0

Demand efficiency Weighted output constraint 1.00 u1g2þu2e2þu3l2þu4s2 ¼ 1 Binding 0

Parameter weight equity 0.202 u2r0.75�u1 Not binding 1.312

Parameter weight energy security 0.768 u3r0.9�u1 Not binding 1.049

Parameter weight climate support 0.424 u4r0.4�u1 Not binding 0.383

Parameter weight equity 0.202 u2Z0.1�u1 Binding 0

Parameter weight energy security 0.768 u3Z0.3�u1 Not binding 0.162

Parameter weight climate support 0.424 u4Z0.05�u1 Not binding 0.323

Table 10
Optimal modal weights of restricted weight determinisic DEA with Bi-level iterative optimization.

Portfolio Weighted output Weighted input Overall technical

efficiency (OTE)

Modal weight based

on OTE (m)

Generation 1.69 2.79 0.604 0.232

Supply efficiency 1.34 1.34 1.000 0.384

Demand efficiency 1.00 1.00 1.000 0.384

Table 11
Optimal modal weights of restricted weight stochastic DEA with Bi-level iterative optimization.

Portfolio Weighted output Weighted input Overall technical

efficiency (OTE)

Modal weight based

on OTE (m)

Generation 1.75 6.39 0.27 0.218

Supply efficiency 1.51 2.98 0.51 0.403

Demand efficiency 1.00 2.10 0.48 0.379

Table 12
Twelfth plan generation allocations for India’s power sector portfolios.

Portfolio Potential limitation

factor (pi)

Deterministic DEA potential limited

model Weight (mi� pi)

Deterministic DEA (Iterative) portfolio

power output (MW)

Stochastic DEA (Iterative) portfolio

power output (MW)

New

generation

1.0 0.232 80,100 78,700

Supply side

efficiency

0.1 0.038 13,300 14,500

Demand side

efficiency

0.05 0.019 6,600 6,800
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and restricted weight cases, though the absolute efficiencies are
smaller in the stochastic case due to increased stringency of
constraints, which necessitates greater outputs for their satisfac-
tion and therefore greater slacks in non-binding constraints as
compared to the deterministic case. Moreover, the greater coeffi-
cient of variation of the cost input of the demand side efficiency
option has the effect of reducing the optimal efficiency of that
option in restricted weight stochastic DEA.

6.4. Optimal twelfth plan power sector portfolios

We use the restricted weight deterministic and stochastic options
to arrive at the optimal 12th plan power sector portfolios using bi-
level iterative optimization. The modal weights of demand side and
supply side portfolios for the deterministic option are identical,
though efficiency discrimination among the portfolios is retained in
the stochastic case (Tables 10 and 11). It is further seen that the
Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
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optimal portfolio sets are entirely distinct for the deterministic and
stochastic options, which suggests that the stochastic assumption
exerts a key influence in the selection of portfolios in iterative
optimization.

For actual implementation, the portfolios may be efficiency-
limited or potential-limited. Though the modal weights based on
efficiencies for the demand side and supply side options exceed that
of the generation portfolio, the potential for the full realization of such
efficiencies depends on the actual available quantum of generation
and the existing efficiency levels in the transmission and distribution
segments. In view of this potential limitation, we adopt the following
procedure for the apportionment of the 12th Plan generation require-
ment among the portfolios:

We calculate the potential limitation factor (p) for each
portfolio. Considering the current generation capacity as the base,
the potential for new generation is taken as unity, assuming that
doubling of current generation is feasible at the proposed price
zation of India’s power sector strategies using weight-restricted
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levels. The potential for supply side efficiency portfolio is about
10% of current generation capacity, since higher supply side
savings are likely to be realised at higher costs of conserved
energy. The potential for demand side energy efficiency portfolio
is about 5% on account of the added limitation of the distributed
and diffuse nature of demand side efficiency projects. Potential
limitation factors are significant in the present Indian context.
Low costs and greater acceptability of energy efficiency strategies
make them attractive options resulting in high modal weights for
supply and demand efficiency portfolios. However, since the total
generation capacity is less than the actual demand, there is not
enough generation to achieve the targets arising out of the
efficiency weights, which indicates that the efficiency portfolios
of Indian power sector are currently in the potential-limited
Table 13
Optimal 12th plan generation mix.

Energy

technology

Deterministic DEA generation

capacity (MW)

Stochastic DEA generation

capacity (MW)

Coal 47,980 47,580

Natural gas 2,804 4,801

Nuclear 2,884 2,143

Hydro 7,690 8,487

Wind 7,850 8,402

Small hydro 6,969 4,029

Biomass 2,403 1,800

Waste to

energy

160 171

Solar

thermal

641 429

Solar PV 721 857

Total 80,100 78,700

Table 14
Optimal 12th plan supply side strategy mix.

Supply side energy effficiency improvement strategy Determini

efficiency

Effective transformer loading 67

Phase current balancing 602

Low tension (LT) line reconductoring 267

Single phase to 3-phase line conversion 67

Using automatic power factor controller in distribution network 334

Hydroelectric stations-replacement of cooling water pumps 668

New 33KV stations 67

Using star rated transformers 5,280

Renovation & modernization of thermal power stations 5681

Conversion of LT to HT lines 267

Total 13,300

Table 15
Optimal 12th plan demand side strategy mix.

Demand Side Energy Efficiency improvement strategy Determinis

based avo

Replacing ordinary tube lights energy efficient tube lights 27

Replacing incandescent lamps with energy efficient lighting 2373

Introduction of electronic regulators 327

Introduction of solar water heaters 55

Replacement of TV/CRT monitors by LED monitors 300

Using automatic power factor controllers at consumer premises 218

Using variable frequency drives for speed control of motors 218

Using energy efficient motors 1255

Using fibre reinforced plastic (FRP) bladed fans 300

Energy conservation campaign 1527

Total 6600

Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
stochastic data envelopment analysis. Energy Policy (2013), http://d
phase. However, as the power generation rises in proportion to
actual demand and the cost of efficiency projects increases after
the low-hanging fruits are exhausted, it will enter the efficiency-
limited phase. Since the power sector is currently operating in the
potential-limited region, potential limitation factors need to be
applied. Based on these considerations, we calculate the percen-
tage share of each portfolio as follows.

% share of ith portfolio¼mi � pi � 100=
X

i

mi � pi

� �
ð8Þ

where mi is the modal weight and pi, the potential limitation
factor of the ith portfolio.

The 12th Plan generation requirement of 100,000 MW is
apportioned using Eq. (8) for both deterministic and stochastic
iterative options in Table 12. It may be noted that the generation
system planning is carried out in terms of MW estimates. On
account of the generation capacity falling short of demand in
India, the plants are run at peak plant load factor. Energy outputs
of the plants are, therefore, in direct correlation with the genera-
tion capacity in MW. The same situation, more or less applies to
developing countries, though the model can be supplemented,
wherever necessary, by means of energy calculations.

Portfolio shares can be internally apportioned among the
portfolio strategies using the optimal first level allocations
obtained from the iterative optimization.

Since genetic algorithm is employed for optimization at the
first level, it gives a number of optimal or near optimal portfolios.
These portfolios are given as input to the second level where the
selection of the best first level portfolio is made, based on
maximization of efficiency at the second level. Stochastic varia-
tions in cost, impact on second level efficiencies, as these
efficiencies are computed in terms of costs, risks and barriers of
stic DEA supply side

based avoided generation (MW)

Stochastic DEA supply side efficiency

based avoided generation (MW)

63

563

1,375

1,625

63

1,125

250

3,063

6063

313

14,500

tic DEA demand side efficiency

ided generation (MW)

Stochastic DEA demand side efficiency

based avoided generation (MW)

24

2131

335

24

24

120

527

1317

24

2275

6800
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the first level portfolios and also the internal distribution of
portfolio shares. Therefore, those first level portfolios which have
greater stochastic cost variations, tend to have lower optimal
efficiencies at second level. While deterministic DEA does not
distinguish portfolios in terms of cost variations, Stochastic DEA
selects those portfolios which have more stochastic resilience.
Therefore the portfolios selected in the deterministic and sto-
chastic cases are not the same. This leads to variations in the
constituent investments in each portfolio. The shares of various
portfolio strategies are given in Tables 13–15. The internal
apportionment of each portfolio is purely based on the optimal
decision vectors of the first level of the bi-level algorithm and not
based on official 12th Plan allocations.
7. Policy implications and conclusions

Current planning methodology in India is a process of aggregation
of Plans of various ministries at the level of the Planning Commission.
The broad approach to the Plan is evolved by the Planning Commis-
sion following a process of wide-ranging consultations with various
stakeholders (Planning Commission of India, 2011). Ministries/
Departments/Organizations develop the strategies and projects based
on stakeholder consultations (Ministry of New & Renewable Energy,
India, 2011) to achieve the objectives developed in the Approach
Paper. These strategies are aggregated at the level of the Planning
Commission and approved after modifications based on further
consultations. It has been suggested that (Jebaraj and Iniyan, 2006)
formulation of a suitable energy model will help in the proper
allocation of renewable energy resources such as solar, wind, bio
energy and small hydropower in India. As an improvement to the
planning process, this paper suggests the use of optimization techni-
ques to achieve the objectives of planning through a transparent and
evidence-based model, which can incorporate the renewable energy
and energy efficiency portfolios critical for climate change mitigation.

The objectives of India’s 12th Five Year Plan in the energy
sector have been identified as faster growth, better inclusion,
energy security and sustainability. These objectives have to be
incorporated while prioritising the strategies. While a genetic
algorithm can optimize the strategies at the first level, the
efficiency optimization technique useful for the second and
higher stages has been described in detail. It also describes how
these objectives can be translated to proxy attributes to indicate
economic growth, energy equity, energy security and climate
change mitigation. The analysis shows that weight-restricted
stochastic DEA model is most suitable for efficiency optimization
of strategies as it takes into account the limited substitutability of
outputs of the model as well as the stochastic nature of key
inputs. The model is capable of discriminating various portfolios.

This procedure is applied to the Indian power sector as this
sector is vital in the context of climate change mitigation. The
algorithms have been applied to optimize India’s power sector
portfolios to identify efficient strategy decision vectors by itera-
tive optimization. By grouping the strategies in power sector into
three portfolios, namely, generation mix, demand side efficiency
group and supply side efficiency group, each portfolio is opti-
mized taking into account the objectives of cost minimization and
CRBI reduction. The portfolio of strategies is further optimized at
the second level using higher level objectives. The procedure
gives a transparent approach to decision making so that sensitiv-
ity analysis and scenario projections can be carried out for
optimal policy analysis. The methodology generates a number of
near-optimal solutions at the first level, which is filtered through
higher levels of optimization using the macro-level objectives
defined at higher levels. The key aspect of the procedure is to
define the proxy-attributes for the objectives at each level, so as
Please cite this article as: Vazhayil, J.P., Balasubramanian, R., Optimi
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to accurately describe them based on portfolio characteristics.
Preference information for combining them needs to be incorpo-
rated into the weights of the DEA model as well.

The methodology, therefore, is participatory, with the policy
maker incorporating ideas of attributes and preference informa-
tion at various levels of optimization. However, the advantage is
that the information is incorporated in a logical and structured
manner so that choice can be made based on the scenario results
leading to an evidence-based approach to policymaking.

The effectiveness of DEA in determining the efficiencies of decision
making units is utilized for the successful implementation of the
optimization algorithm. In the deterministic and stochastic versions
of DEA, results are compared in respect of both unrestricted and
restricted weight models. First, we solve the deterministic DEA model
both for the overall technical efficiency of the CCR model and the
pure technical efficiency of the BCC model. It is seen that the technical
and scale efficiencies are close to unity and there is very little
discrimination among the portfolios according to these models. The
conventional CCR and BCC models encounter discrimination pro-
blems, on account of the assumption of perfect substitutability of
inputs/outputs which makes their weights unrestricted. In the pre-
sent strategy optimization problem, limited or no substitutability of
outputs is a more realistic assumption and therefore, fixed weight or
restricted weight DEAs are found more appropriate. We solve the
deterministic DEA model for both these options which shows that
they are useful in clearly discriminating the strategy portfolios based
on efficiency.

The issue of stochastic nature of inputs/outputs is also relevant
in the use of DEA as an efficiency measurement tool, especially
because DEA efficiencies are determined on the basis of a single
set of inputs and outputs. However, if the assumption of perfect
substitutability of inputs/outputs of conventional DEA holds in a
particular case, then stochastic variations of total inputs/outputs
will be more relevant than individual variations. In the strategy
optimization case, cost has been considered stochastic and there-
fore, we have considered the chance constrained version of
stochastic DEA. Outputs are considered deterministic, as the
assumption of limited substitutability of outputs, enables varia-
tion of output weights within assigned bounds.

The analysis shows that weight-restricted stochastic DEA
model is most suitable for efficiency optimization of strategies
as it takes into account the limited substitutability of outputs of
the model as well as the stochastic nature of key inputs. The
model is capable of discriminating various portfolios.

Bi-level iterative optimization has been employed for the
selection of power sector strategies. It is seen that the stochastic
assumptions for second level optimization exerts influence on the
selection of optimal first level portfolio and also on the optimal
efficiencies at second level. Therefore, it would be worthwhile to
compare the various methods of introducing stochastic variations
into DEA models to analyse their performance in handling such
inputs/outputs. Moreover, extension of the methodology for the
optimization of the entire energy sector needs to be modelled,
which would necessitate optimization of portfolios of higher
levels using suitably designed DEA models.
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