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Abstract

Purpose – Optimization of energy planning for growth and sustainable development has become
very important in the context of climate change mitigation imperatives in developing countries.
Existing models do not capture developing country realities adequately. The purpose of this paper is
to conceptualizes a framework for energy strategy optimization of the Indian energy sector, which can
be applied in all emerging economies.

Design/methodology/approach – Hierarchical multi-objective policy optimization methodology
adopts a policy-centric approach and groups the energy strategies into multi-level portfolios based on
convergence of objectives appropriate to each level. This arrangement facilitates application of the
optimality principle of dynamic programming. Synchronised optimization of strategies with respect to
the common objectives at each level results in optimal policy portfolios.

Findings – The reductionist policy-centric approach to complex energy economy modelling,
facilitated by the dynamic programming methodology, is most suitable for policy optimization in the
context of a developing country. Barriers to project implementation and cost risks are critical features
of developing countries which are captured in the framework in the form of a comprehensive risk
barrier index. Genetic algorithms are suitable for optimization of the first level objectives, while the
efficiency approach, using restricted weight stochastic data envelopment analysis, is appropriate for
higher levels of the objective hierarchy.

Research limitations/implications – The methodology has been designed for application to the
energy sector planning for India’s 12th Five Year Plan for which the objectives of faster growth,
better inclusion, energy security and sustainability have been identified. The conceptual framework
combines, within the policy domain, the bottom-up and top-down processes to form a hybrid
modelling approach yielding optimal outcomes, transparent and convincing to the policy makers.
The research findings have substantial implications for transition management to a sustainable
energy framework.

Originality/value – The methodology is general in nature and can be employed in all sectors of
the economy. It is especially suited to policy design in developing countries with the ground realities
factored into the model as project barriers. It offers modularity and flexibility in implementation and
can accommodate all the key strategies from diverse sectors along with multiple objectives in the
policy optimization process. It enables adoption of an evidence-based and transparent approach to
policy making. The research findings have substantial value for transition management to a
sustainable energy framework in developing countries.
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1. Introduction
Energy planning is a key component of macro economic planning due to its close
correlation with economic growth and human development. Optimization of energy
planning has become extremely important in the context of sustainable development
and climate change mitigation imperatives. It has been shown that (Lameira et al.,
2011) there are statistically significant relationships among character of governance,
potential for sustainable growth and quality of energy management. In the context of a
developing country, India, we present a framework for the multi-level, multi-objective
optimization of energy strategy portfolios.

Identification of optimal energy policies requires selection from a number of possible
alternatives offering varying outcomes including emission reduction. In traditional
approaches, a stand-alone model of the economic, energy, climatic and related systems
is constructed and the impacts of various policy variables on the system are analysed for
policy selection. Since the energy-economy system is quite complex and the
representation of macro economic objectives in terms of actionable micro policy
strategies is a challenging task, policy planning often reduces to the application of
heuristics or informed guesses.

Several analytical models have been devised in the literature (Kanudia and Loulou,
1999; Murthy et al., 2006; Rafaj et al., 2006; Köhler et al., 2006; Božić, 2007; IPCC, 2007)
for addressing the challenges of energy system optimization. There are integrated
assessment models using knowledge from diverse scientific fields where economic
models are combined with environmental or climate change models for policy
evaluation or policy optimization (Löschel, 2002). A comparative overview of existing
energy system models to assess their suitability for analyzing energy, environment
and climate change policies of developing countries is provided in Bhattacharyya and
Timilsina (2010), which indicates that the existing energy system models inadequately
capture the developing country features and the problem is more pronounced with
econometric and optimization models than with accounting models.

A usual approach is to model the energy-economy-climate system in terms of
input-output or equilibrium or technology models consisting of a number of parameters.
The policies are embedded into such complex models to see their impact on model
variables. This approach, besides being not realistic in a developing country context, has
three main disadvantages: first, the system is modelled independently of the policies
which are to be analysed by the model. Therefore, the system becomes complex and may
include parameters which are not necessarily relevant for the policies under
consideration. Second, the interaction of the policy variables with the system
parameters is not transparent to the policy maker. Third, the top-down and bottom-up
conflict arises based on the nature of manifestation of technological change in the model.

Shukla (1997b) compares the top-down and bottom-up approaches to the economic,
environmental and energy sector modelling. While bottom-up models begin from a
disaggregated representation of the economy mainly at the technological level,
top-down models look at aggregate economic behaviour. Bottom-up models are more
optimistic based on the possibility of technological progress. Top-down models
become pessimistic due to the assumption that the economic behaviour of rational
agents under the prevailing economic conditions is the most efficient. Top-down and
bottom-up approaches to modelling result (Kandlikar and Morel, 2007) in different cost
functions. Moreover, economic modelling in developing countries using the currently
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available international models presents country specific problems. In present top-down
models, developing country realities like underdeveloped markets, vast informal
sector, predominant government monopolies, restrictive trade regulations and
multifarious barriers to competition are not adequately modelled (Shukla, 1997a).
Barriers and other policy issues specific to developing countries pose problems for
meaningful policy modelling in these countries (Pandey, 2002). As such, new modelling
approaches for the decision-making framework to include barrier representation as
well as policy impacts are needed (Worrell et al., 2004) in economic-engineering models.

Polatidis et al. (2003) suggest a planning framework for transition to a new sustainable
energy system combining integrated assessment (IA), transition management (TM) and
multi-criteria analysis (MCA). The framework suggests spatial integration mainly
through IA and temporal integration through TM, with MCA providing the qualitative
and quantitative dimension. Rotmans (2006) suggests a two-track approach for integrated
sustainability assessment, namely, finding new ways to use the current portfolio of IA
tools efficiently and effectively, while at the same time developing building blocks to
support the next generation tools. Convergence of model rationality and policy rationality
is achieved by bringing them together in a participatory process. Once the policy
convergence for sustainability is achieved, the key elements of governance can be
integrated into TM (Kemp et al., 2005) for achieving sustainability.

We propose an approach for integration of multi-sectoral energy strategies which
first identifies the relevant strategy portfolios based on a log frame analysis of the
problem. In a multi-sectoral policy domain, a hierarchical approach involving multi-level
optimization is suggested for selecting optimal policies. Though the methodology does
not integrate spatial and temporal aspects, it can be employed to generate regional policy
scenarios at different time periods to design suitable TM framework. The policy-centric
approach reduces the complexity of the models and helps the policy maker to correlate
the processes, objectives and results, which more than compensates for any loss of
generality in such models. Co-production of knowledge as a collaborative effort of
scientists and policy makers has been suggested for the integration of their respective
domains (Kemp and Rotmans, 2009).

The policy-centric optimization approach focuses on linking strategies to defined
planning objectives. At the macro level, the selected energy planning objectives are
economic growth, energy equity, energy security and climate sustainability. Climate
change mitigation targets incorporated into the optimization process contribute to
sustainable development objectives. The key energy related steps to address climate
change include use of non-carbon-based energy sources, energy carriers and/or energy
carriers that facilitate the use of non-carbon-based energy sources, removal and
sequestration of carbon-based atmospheric emissions, and increase of efficiency
(Rosen, 2009).

In this essentially bottom-up iterative approach, the objectives are arranged
hierarchically. The strategies at the lowest level are identified, which need to be
optimized according to their ability to achieve the objectives at that level. In a complex
system, it may not be easy to accurately map the micro-strategies to the
macro-objectives. This is because, establishing the linkage requires sufficient level of
aggregation of strategies to make it a significant policy. To achieve a critical mass of
strategies and link them to macro-objectives, they are aggregated into policy portfolios.
The portfolios are optimized by attaching objectives of appropriate level to them.
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This facilitates the matching of objectives to the level of aggregation of strategies at
every step of optimization. The synchronisation of policies and objectives at various
levels ensures that the macro-objectives are achieved at the highest level while micro
objectives are optimized at lower levels with respect to the corresponding
strategies/policies. By iterative execution of this process, multi-level system
optimization is achieved in a manner transparent to the policy maker, simplifying the
process of modelling and the inherent conflicts associated with the top-down and
bottom-up paradigms. Section 2 describes the hierarchical multi-objective policy
optimization (HMPO) algorithm in detail.

2. Hierarchical multi-objective policy optimization
The hierarchical policy-centric approach for energy planning makes use of the
optimality principle of dynamic programming. It is facilitated by grouping policy
strategies based on the commonality of objectives so that they can be locally optimized
within the portfolio assuming the monotonicity of the objective function. The portfolios
are further optimized with redefined macro-objectives, using methods such as data
envelopment analysis (DEA) which assess the efficiencies of the portfolios.
Independent optimizations at various levels with objectives appropriate to the
respective level generate optimized outputs which feed into the next higher level.
Feedback corrections, if any, can be incorporated during iterative optimization.

A related aspect is the multiplicity of objectives. For optimization of heterogeneous
policies from different sectors, multiple levels of optimization are designed in view of the
fact that the same set of objectives may not apply at all levels. Therefore, the objectives
need to be arranged in a hierarchy suitable for sub-sectoral, sectoral and economy wide
optimization. Optimal policies from different sectors are combined to form higher level
portfolios, using objectives which converge at that level. The convergence of objectives
makes them amenable to independent optimization at the respective levels as it
facilitates the monotonicity of the objective function.

As the optimization process moves up from the micro to the macro levels, the
objectives of optimization also evolve in tandem. By extending this hierarchical
process to sufficient number of levels, synchronous optimization of multi-sectoral
policies with respect to their hierarchical objectives can be achieved. Once the final level
of optimization is reached, the process can be iterated to include additional constraints,
if any, identified during the initial run. This method of hierarchical policy optimization
is shown in Figure 1.

The dynamic programming approach can be employed in the optimization process to
reduce the multi-level optimization problem into simpler single level problems at various
hierarchical levels. The methodology of optimization at each level can be chosen
independently on account of the Bellman’s principle of optimality. According to this
principle, an optimal policy is such that whatever the initial state and the initial decisions
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision (Rao, 2010). The application of this principle requires
that the objective function be monotonic, which implies that the optimization at a
particular level is independent of the optimal outcomes up to that level. For a stochastic
process, this requires memory-less Markov state signals for the system states. Choosing
objectives proximate to the goals to be achieved at each level of the strategy portfolios,
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can satisfy the requirement of monotonicity to a great extent. This approach for energy
strategy optimization can handle multi-level problems as shown below.

Let p1 represent the input state variable, q1 decision vector and o1, output state
variable of each component of the first stage (Figure 1). Then s1 ¼ [p1, p2,. . .pn]
represents the first level input state variable vector with x1 ¼ [q1, q2,. . .qn] representing
the first level decision variable vector with the transformation function o1. ¼ t1(p1, q1).
The corresponding vectors for the ith stage will be si and xi. Let r be the first level
return function and R, the second level return function.

Using the transformation function T, we have:

s2 ¼ ½o1; o2; o3; . . .on� ¼ ½t1ðp1; q1Þ; t2ðp2; q2Þ; . . .tnðpn; qnÞ�

¼ Tðs1; x1Þ siþ1 ¼ Tðsi; xiÞ
ð1Þ

Considering an additive objective function, we have, for the two-stage system:

f ¼
Xn

i¼1

r0iðqi; piÞ þ R½x2; s2�

¼ rðx1; s1Þ þ R½x2;Tðs1; x1Þ� using equation ð1Þ:

ð2Þ

Figure 1.
Hierarchical

multi-objective policy
optimization
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We assume the monotonicity of the objective function in order to apply the Bellmann’s
principle of optimality. For the first stage, we find the optimal value of the objective
function considering the return function from that stage only:

Optðf1Þ ¼ f
_

1ðs1Þ ¼
X1

Opt{rðx1; s1Þ} ð3Þ

The optimal objective function of the two-stage problem is as follows:

Optðf2Þ ¼ f
_

2ðs2Þ ¼
X1;X2

Opt{rðx1; s1Þ þ R½x2;Tðs1; x1Þ�}

¼
X1

Opt{rðx1; s1Þ} þ
X1;X2

Opt{R½x2;Tðs1; x1Þ�}

¼ f
_

1ðs1Þ ¼
X2

Opt{R½x2;Tðs1; x
_

1Þ�}

ð4Þ

The optimal decision vectors for both the stages, optimal x1 and x2, can now be chosen
by splitting up the optimization problem into two sub-problems:

x
_

1 ¼ Optðx1Þ ¼
x1

arg opt{f
_

1ðs1Þ}

x
_

2 ¼ Optðx2Þ ¼
x2

arg opt{R½x2;Tðs1; x
_

1Þ�}
ð5Þ

where arg opt denotes the value of x1 or x2 at which the expression that follows is
optimal.

If the inputs of the decision-making unit (DMU) are stochastic, then we have to use
the expected values of the function instead of deterministic values, assuming Markov
decision process for various states, where the probability of state transition depends
only on the current state and decision and not on the historical path:

x
_

1 ¼ Opt{E½x1�} ¼
x1

arg opt{E½f
_

1ðs1Þ�}

x
_

2 ¼ Opt{E½x2�} ¼
x2

arg opt{E½Rðx2;Tðs1; x
_

1ÞÞ�}
ð6Þ

where E[ · ] represents expectation of the random variable.
Equation (5) or (6) can be extended for the iterative optimization of the

strategies/policies at n hierarchical levels as shown in the algorithm in Figure 2.
The algorithm optimizes the additive n-level objective function by independent single
level optimizations. The entire cycle of optimization at different levels can be
iteratively repeated to incorporate feedback corrections, if any, arising on account of
the assumption of monotonicity. A halting criterion is designed to terminate the
algorithm on convergence to the optimal value. This iterative process yields the
optimal portfolio with respect to the hierarchy of objective vectors.

3. Energy sector optimization
We consider India’s energy sector optimization for sustainable development and
climate change mitigation. In India, the energy demand growth of around 6.5 per cent
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per annum has been estimated growing from 522.81 mtoe in 2010-2011 to 738.07 mtoe
in 2016-2017 assuming the elasticity of energy demand of about 0.75. Correspondingly,
a demand of 1,200 billion units of grid power has been projected by the end of 12th Five
Year Plan (2012-2017) with a demand growth of 6 per cent requiring additional
generation capacity of 100,000 MW during the 12th Plan (Planning Commission of
India, 2011).

For the formulation of the hierarchy of objectives in the context of sustainable
development, the important energy sector strategies of India can be grouped into
strategies belonging to three groups, namely:

Figure 2.
Hierarchical

multi-objective
optimization algorithm

Apportionment of resources for
strategies/Assignment of regulatory inputs

Optimization of Level 1 objectives for
maximum return with respect to Level 1

inputs and outputs

If f > fopt then fopt = f, Save Objective
function Parameters

Formulate the Multi-level Objective
Hierarchy. Objective Function(fopt)=0

Optimal Strategy Portfolios

Optimization of Level n objectives for
maximum return(f) with optimal inputs

from Level (n-1)

Halting
criterion
satisfied?

No

Yes

n levels

Feedback
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(1) power sector;

(2) transport sector; and

(3) industry, mining and allied sectors (Figure 3).

The key optimization objectives based on the approach to the 12th Five Year Plan are:
economic growth, energy equity, energy security and climate sustainability. Sectoral
and sub-sectoral portfolios need to be optimal with regard to these objectives. While
economic growth and energy security are vital for achieving the developmental goals,
equity and emission reduction are key sustainability imperatives. Policies represented
by strategy portfolios have to be linked to these objectives at the highest level. At lower
level, the objectives are linked to project variables such as cost, risk and barriers.
In view of this, higher level objectives are generally represented by means of proxy
attributes which take suitably designed functional forms whereas lower level
objectives can be described in terms of input variables or their functions.

Each of the three energy sectors are now segregated to form the corresponding
sub-sectors for identification of key energy strategies of the 12th Five Year Plan.
For power sector, we involve three sub-sectors, namely:

(1) new generation portfolio;

(2) supply side energy efficiency portfolio; and

(3) demand side energy efficiency portfolio.

They are shown in Figure 4 along with their optimization criteria.
For each of the sub-sectors, strategies for achieving the objectives are identified

with appropriate optimization criteria. The criteria are cost and comprehensive
risk-barrier index (CRBI) at this level. These twin criteria capture the possibility of time
and cost over-runs in the execution of projects which are common project management
problems in developing countries.

Often, barriers to project implementation are generally not captured in the energy
models (Worrell et al., 2004). CRBI rectifies this by combining the cost risk involved
in adopting a particular strategy or project, with the barriers encountered for the
implementation of that strategy or project in its socio-economic environment.

Figure 3.
Energy sector
optimization

Optimal Power
Sector Policy

Portfolio

Optimal Industrial,
Mining and Allied

Sectors Energy Policy
Portfolio

Optimal
Transport Sector
Energy Policy

Portfolio

Optimal
Policy
Mix
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Therefore, CRBI is a combined index which integrates the ground realities of strategy
implementation along with the volatility of project costs to guide the choice of optimal
policies. Cost risk can be estimated using the standard deviation of the cost variable.
To estimate the barrier index, we use the analytic hierarchy process as follows: first,
pair-wise comparison of each of the energy strategies with respect to the barrier level is
carried out to obtain the reciprocal comparison judgment matrix and then the principal
eigen vector of that matrix is computed to obtain the barrier index vector. Consistency of
the matrix is verified to validate the outcome. Cost risk and barrier index are then
combined using a suitable function, say, by calculating their product, to obtain the value
of CRBI to be used in the bi-objective optimization process.

As in the case of power sector, we identify five sub-sectors for the transport sector and
four sub-sectors for industry, mining and allied sectors for hierarchical optimization
along with suitable first level objective criteria as shown in Tables I and II.

Optimization at each level would require multi-criteria decision methods. Greening
and Bernow (2004) provide a description of the use of multi-criteria decision-making
methods in an IA framework. Techniques such as value tree analysis, portfolio
optimization, analytic hierarchy process, stochastic DEA, linear programming,
genetic algorithms, etc. individually or in combination may be used at various levels.

Figure 4.
Power sector optimization

Generation
Portfolio

(Levelized Cost,
CRBI)

Energy efficiency-
Demand side: Industry,

buildings (Cost of
Conserved Energy,

CRBI)

Energy efficiency-
supply side (Cost  of
Conserved Energy,

CRBI)

Optimal
Policy
Mix

Sub-sectors of transport portfolio
Economic cost-benefit criterion
for optimization

Implementation criterion
for optimization

(i) Road transport portfolio Cost of energy for unit output CRBI
(ii) Water transport

(iii) Rail transport
(iv) Air transport
(v) Intermodal integration CCE

Table I.
Transport sub-sectors

and optimization criteria
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At the sub-sectoral level, mean variance portfolio optimization technique, which
converts a single variable stochastic problem into an equivalent bi-variable
deterministic problem, is suitable as it does not require computation of surfaces
(Steuer et al., 2005). This is a classical technique (Markowitz, 1952), which maximizes
the return from a portfolio, while minimizing its expected volatility or risk. As far as
the optimization of energy strategies are concerned, this technique can be used to
minimize the cost of a strategy as well as its CRBI simultaneously.

For optimization of the power sector strategies at the first level, cost of energy is a
significant criterion. In respect of conservation strategy portfolios, the cost
effectiveness (CE) supply curve approach (Lutsey, 2008) or the cost of conserved
energy (CCE) approach (Sathaye et al., 2006) can be utilized for evaluating this
criterion. In these approaches, cost indicates the net cost impacts over the lifetime of
the technology.

If the focus is on emission reduction, the CE of emission reduction in respect of
mitigation oriented strategies may be estimated (Lutsey, 2008) as:

Cost effectiveness value ð$=tonÞCE ¼ ð1 2 NPVÞ=EGHG ð7Þ

I ¼ Initial cost of technology.

EGHG ¼ Emission reduction over average technology lifetime (in tons).

Net present value of technology ðin $Þ NPV ¼
Xn

t¼0

ðBt 2 CtÞ

ð1 þ dÞt ð8Þ

t ¼ Time in years of the technology being evaluated.

Bt ¼ Benefit impacts of technology in year t.

Ct ¼ Cost impacts of technology in year t.

d ¼ Discount rate.

The CCE in respect of energy efficiency strategies is estimated (Sathaye et al., 2006) as
follows:

Cost of conserved energy ð$=KWhÞCCE ¼ I:q=ES ð9Þ

Capital recovery factor ðper yearÞ q ¼ d=½1 2 ð1 þ dÞ2n� ð10Þ

Sub-sectors of industry,
mining and allied sectors

Economic cost-benefit
criterion for optimization

Implementation criterion
for optimization

(i) Industrial portfolio Cost of conserved fuel CRBI
(ii) Mining portfolio CE of emission reduction

(iii) Exploration portfolio
(iv) Construction portfolio

including green buildings
CCE

Table II.
Industry, mining and
allied sub-sectors and
optimization criteria
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I ¼ Capital cost.

ES ¼ Annual energy savings (KWh/year).

n ¼ Life time of the option (years).

I.q in equation (9) represents annuity of investment which is the annual payment to be
made to the bank to pay back the project investment with interest.

In a power market where the market price of electricity is growing at the rate of g,
the value of the power saved increases in future years. Therefore, the returns from the
power saved, form a series of growing annuities. An appropriate financial measure to
check the viability of the efficiency project in this context would be to check whether
the annuities from the power savings can pay back the investment. For this, the
present value of the growing annuities should be equal to the investment. Using the
equation for the present value of growing annuities (Damodaran, 2011), we get:

I ¼ Að1 þ gÞ
½1 2 ðð1 þ gÞ=ð1 þ dÞÞn�

ðd 2 gÞ
ð11Þ

where A is the cost of power saved in the initial year of implementation.
In the growing annuity scenario, from equation (11), we have:

Cost of conserved energy ð$=KWhÞ CCE ¼ I:q*=ES ð12Þ

q* ¼ ðd 2 gÞ=½ð1 þ gÞð1 2 ð1 þ gÞ=ð1 þ dÞÞn� for d – g

¼ 1=n for d ¼ g
ð13Þ

Equation (13) assuming d ¼ g is appropriate for calculating the CCE in the Indian
power sector.

For second and higher levels of optimization, restricted weight stochastic DEA can
be employed. DEA is a method of comparing the efficiencies of DMUs, without knowing
the input-output transformation functions. It can be employed in the efficiency
determination of energy strategy portfolios. For this purpose, each sub-sector portfolio is
considered as a DMU with specified inputs and outputs. The efficiency is estimated as
the ratio of a linear combination of outputs to that of inputs. For maximizing the
efficiency of each DMU, the fractional programming model is converted into an
equivalent linear programming model and solved for optimal efficiency.

In DEA, the efficiency of each DMU is maximized assuming the substitutability of
inputs and outputs, which means that the weights of inputs and outputs are allowed to
assume all positive values so as to maximize efficiency scores. However, this results in
identical efficiency scores for the DMUs in the Pareto frontier. Ranking of DMUs is
possible by restricting the weights of inputs and outputs according to their importance,
which then becomes restricted weight DEA. The Preference information regarding
weights is utilized in this model for efficiency ranking of DMUs (Salo and
Punkka, 2011).

4. Optimization of Indian power sector
As an illustration of the application of the algorithm, we consider the optimal portfolios
to apportion India’s electricity capacity addition target of 100,000 MW as projected
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in its 12th Five Year Plan, using the dual stage optimization process described above.
For the optimization of the Indian power sector, the strategies used for optimization of
the three sub-sectors are listed in Table III. In case of comparison of generation
technologies, levelized cost estimates including carbon costs, can be employed as the
first criterion (California Energy Commission, 2007). CCE can be used for energy
efficiency portfolios. CRBI can be employed as the second criterion in all the sub-sectors.
For the new generation portfolio, the optimal allocation of generation requirement
among the possible generation sources constitutes the decision vector. Similarly, for the
supply side and demand side efficiency portfolios, the optimal proportion of power
conserved using the respective strategies forms the decision vector.

Genetic algorithm employed at the first level, is capable of identifying a number of
near-optimal solutions. They perform well, even when the objective functions are
non-convex. The requirement of a detailed specification of the optimization problem is
minimal in the case of genetic algorithms. However, their weakness lies in not being able
to converge to the most optimal solution quickly. In other words, they find diverse
near-optimal solutions, but may not converge to the global deterministic optimum
quickly. When the variables employed in optimization are stochastic, a number of
near-optimal solutions are more useful in most situations than a single deterministic
solution. These near-optimal solutions can be used for the selection of a practical
alternative for implementation or they can be gainfully utilized in iterative evaluation of
a higher stage optimum. The advantage of being able to generate a number of
near-optimal diverse solutions along with the minimal requirement of detailed
specification of the optimization problem make genetic algorithms attractive for the
first stage of the hierarchical multi-objective optimization algorithm. However, other
optimization algorithms such as particle swarm optimization or simulated annealing,
etc. can also be employed for this purpose.

Strategy of new generation
by multiple sources

Supply side energy efficiency
improvement strategy

Demand side energy efficiency
improvement strategy

Coal Effective transformer loading Replacing ordinary tube lights by
energy efficient tube lights

Natural gas Phase current balancing Replacing incandescent lamps
with energy efficient lighting

Nuclear Low tension (LT) line
reconductoring

Introduction of electronic
regulators

Hydro Single phase to three-phase line
conversion

Introduction of solar water
heaters

Wind Using automatic power factor
controller in distribution network

Replacement of TV/CRT
monitors by LED monitors

Small hydro Hydroelectric stations-
replacement of cooling water
pumps

Using automatic power factor
controllers at consumer premises

Biomass New 33 KV stations Using variable frequency drives
for speed control of motors

Waste to energy Using star rated transformers Using energy efficient motors
Solar thermal Renovation and modernization of

thermal power stations
Using fibre reinforced plastic
(FRP) bladed fans

Solar PV Conversion of LT to HT lines Energy conservation campaign

Table III.
Strategies for energy
efficiency improvement
in power sector
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First we apply the minimization of cost and CRBI to the strategies in each of the
sub-sectors shown in Table III, to generate the optimal share of each strategy. For this,
the typical parameter values have to be estimated for each of the strategies. For example,
for the supply side efficiency portfolio, we estimate the costs of conserved energy (C),
risk index (R) and barrier index (B) as shown in Table IV.

The CCE is estimated as the ratio of investment to the total energy savings during
the lifetime of the technology in a typical case using equation (13). The risk and barrier
indices are generated by analytic hierarchic process (AHP) using the pair-wise
comparison of the risk and barrier elements for various strategies. Alternatively, where
the standard deviations of the costs are known as in the case of new generation
sources, the risk values can be taken as the standard deviations. AHP can be
implemented using Web-HIPRE software which generates the principal eigen vector of
the comparison judgment matrix (HUT, 2003). This matrix is obtained by expert
estimates. The principal eigen vector can be used as proxy attribute of risk or barrier
variables. Similar estimates have to be made for the strategies in each of the
sub-sectors.

Coming to the optimization part, let X represent the optimal proportion of the
supply side efficiency strategies. We solve for X by minimizing the portfolio cost and
barrier values using a genetic algorithm. The minimization problem is:

Minimize Portfolio Cost, G(X) ¼ XTC

Minimize Portfolio CRBI, H(X) ¼ (XTB)*(XTR)

Subject to xðLÞ
i # xi # xðUÞ

i ; i ¼ 1; 2; . . .10; variable bounds and other
constraints,

where C, B and R represent cost, barrier and risk vectors, respectively.
The optimal proportions (X) of supply side and demand side efficiency strategies

generated by using this procedure are given in Table V. Optimal shares of new
generation strategies are also obtained in a similar manner.

These optimal portfolios, namely, new generation, demand side efficiency and
supply side efficiency portfolios, form inputs to the DMUs of the second stage, which
determines the optimal proportion of each sub-sector using weight restricted stochastic
DEA. The portfolios are compared by determining their DEA efficiencies with relevant

Supply side efficiency strategy

Cost of conserved
energy (C)
(Rs/KWh)

Risk
index

(R)

Barrier
index

(B)

Effective transformer loading 0.01 0.065 0.337
Phase current balancing 0.19 0.022 0.113
LT line reconductoring 0.90 0.196 0.067
Single phase to three-phase line conversion 1.36 0.13 0.049
Using automatic power factor controller in distribution network 2.12 0.195 0.113
Hydroelectric stations-replacement of cooling water pumps 2.05 0.065 0.067
New 33 KV stations 2.11 0.065 0.038
Using star rated transformers 1.41 0.043 0.067
Renovation and modernization of thermal power stations 1.75 0.022 0.037
Conversion of LT to HT lines 1.69 0.196 0.112

Table IV.
Costs, risks and barriers

of efficiency strategies
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inputs and outputs. Each of the portfolios is treated as a DMU with stochastic cost and
barrier index as inputs. The outputs of the DMU are designed keeping in mind the
relevant macro-objectives in terms of the policymaker’s priorities. For power sector
optimization, economic growth, energy equity, climate sustainability and energy
security may be chosen as the outputs of the DMU from a developing country
perspective. Once these are chosen, it is necessary to design suitable proxy attributes to
represent these outputs in terms of the proportion vectors X as well as other inputs.

The proxy attribute for economic growth can be defined in terms of an
appropriately defined growth accounting function. For example, India’s growth
accounting function could be computed in terms an economic growth model, say,
Mankiw-Romer-Weil model (Mankiw et al., 1992), which can be used to estimate the
contribution of different policies to economic growth. Similarly, the equity impact of a
particular policy is determined by identifying the variables affecting energy equity like
the cost of energy and the amount of energy subsidy, etc. These variables can be
suitably combined to define an equity function. Energy security is quantified in terms
of suitable proxy attributes derived from the portfolio characteristics. Emission
reduction objectives can be defined in terms of India’s Copenhagen commitment for a
reduction of 20-25 per cent cut in emission intensity by 2020 compared to 2005 levels.

The optimal weight of each portfolio is now obtained by maximizing the efficiency
of each DMU which is defined as the ratio of the linear combination of outputs to

Supply side efficiency
strategy

Optimal shares (%)
of supply strategies

Demand side efficiency
strategy

Optimal shares (%)
of demand strategies

Effective transformer
loading

0.43 Replacing ordinary tube
lights by energy efficient
tube lights

0.35

Phase current balancing 3.88 Replacing incandescent
lamps with energy efficient
lighting

31.34

LT line reconductoring 9.48 Introduction of electronic
regulators

4.93

Single phase to three-phase
line conversion

11.21 Introduction of solar water
heaters

0.35

Using automatic power
factor controller in
distribution network

0.43 Replacement of TV/CRT
monitors by LED monitors

0.35

Hydroelectric stations-
replacement of cooling
water pumps

7.76 Using automatic power
factor controllers at
consumer premises

1.76

New 33 KV stations 1.72 Using variable frequency
drives for speed control of
motors

7.75

Using star rated
transformers

21.12 Using energy efficient
motors

19.37

Renovation and
modernization of thermal
power stations

41.81 Using FRP bladed fans 0.35

Conversion of LT to HT
lines

1.69 Energy conservation
campaign

33.45

Table V.
Optimal shares of
efficiency strategies
in a portfolio
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the linear combination of inputs. The weights for combining inputs and outputs can be
designed as fixed or bounded. The DEA optimization problem can be solved either
using an Excel Solver or using the DEA Programme (Coelli, 1996). The optimal weights
of each portfolio in a typical run, based on restricted weights assigned to the inputs and
outputs are given in Table VI.

The process can be repeated iteratively to maximize efficiency. Once the optimal
shares of each of the strategies and optimal proportions of each of the sub-sectors
maximizing the second stage efficiency are determined, the required power generation,
say of 100,000 MW can be apportioned among the portfolios using the potential limited
portfolio weights given in Table VI. Potential limitation factor is employed to restrict the
optimal generation within the potential of each sub-sector. Potential limited portfolio
weight, therefore, is the product of the portfolio weight based on overall technical
efficiency and the potential limitation factor representing the overall available potential
of that portfolio in the sub-sector. This gives the share of new generation, supply side
efficiency and demand side efficiency as 78,700, 14,500 and 6,800 MW, respectively.

The quantum of generation assigned to each strategy within a portfolio is obtained
by multiplying the above portfolio share by the strategy share in Table V, which is
shown in Figure 5. Each bar in the figure represents the generation capacity or avoided
generation capacity (for demand/supply efficiency portfolios) of the strategies in
various sub-sectors, in the same order as in Table III.

Portfolio
Weighted

output
Weighted

input

Overall
technical
efficiency

(OTE)

Portfolio weight
based on OTE

(%) (mi)

Potential
limitation
factor (pi)

Potential
limited

portfolio
weight

(mi £ pi)

New generation 1.75 6.39 0.11 21.8 1.0 21.8
Supply efficiency 1.51 2.98 0.24 40.3 0.1 4.0
Demand efficiency 1.00 2.10 0.33 37.9 0.05 1.9

Table VI.
Optimal portfolio weights

of bounded weight
stochastic DEA

Figure 5.
Optimal allocation of 12th

plan generation of
100,000 MW for power

sector portfolios
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Once the optimization of sectoral portfolios is completed, resource allocations are made
to implement the strategies. Some of the strategies would require employment of
regulatory or institutional arrangements. For energy sector optimization, the optimal
sectoral portfolios of power sector, transport sector and industrial, mining and allied
sectors are combined by means of efficiency discrimination with respect to the planning
objectives at the highest level. It may be noted that the proxy attributes representing the
same higher level objective need not exactly be the same at different levels of
optimization. This is because the attribute represents the relationship of the objective to
the policy. At different levels, the same objective may connect to the policies of
respective levels through different proxy attributes. The energy optimization at the
highest level gives the investment focus that must be applied to different sectors of the
economy in terms of overall energy planning objectives.

5. Conclusions
The focus of this communication is the formulation of a framework useful for energy
strategy optimization, prioritisation and resource allocation in a developing country
context. Sustainable development is a key imperative of policy planning for which
suitable models have to be designed for optimal outcomes. Often, technically advanced
complex models have their limitations in developing countries. As a key improvement
to this process, HMPO has been formulated for the planning and design of energy
strategy framework. These optimized strategies can then be converted to actionable
programmes, resource allocations and regulatory instruments by the government
departments/organizations to achieve the objectives of the plan. This procedure
combined with a suitable TM framework can be employed to attain energy
sustainability imperatives.

The objectives of India’s 12th Five Year Plan in the energy sector have been identified
as faster growth, better inclusion, energy security and sustainability. These objectives
have to be incorporated into the optimization process while prioritising the strategies.
These macro-objectives cannot be directly incorporated into micro-level strategies.
Therefore, a multi-level hierarchy of disaggregated objectives has been proposed with
strategy portfolios grouped to suit each set of objectives. A generalized algorithm to
optimize policies incorporating various objectives at multiple levels has been described.
For this purpose, effective implementable strategies are identified along with
hierarchically ordered objectives of optimization. As the objectives become more
generalized and aggregated at higher levels, the strategies get organised into portfolios
and portfolio of portfolios and so on. At each level, the strategies/portfolios are optimized
taking into account the objectives synchronising with the respective strategies/
portfolios. This procedure leads to optimized policies at the highest level, with respect to
the macro-objectives set for the plan. By incorporating feedback corrections, if any, and
iterative optimization, this procedure can combine, within the policy domain, the
bottom-up and top-down processes to form a hybrid modelling approach yielding
optimal outcomes, transparent and convincing to the policy makers.

While the methodology is primarily meant for optimization of energy sector policies,
it is useful for power system management also, as it can determine the investments to be
made for power system loss reduction and efficiency improvement. For example, it has
been reported (USAID, 2010) that the most notable practical problems for the
introduction of smart grid in India are customer response and cost-benefit analysis.
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The comparative insights obtained by means of strategy optimization can throw light
on how the smart grid can be gainfully introduced in a phased manner. This would
depend on the capability of the new technology to compete, in terms of contribution to
system objectives, with new generation as well as with the existing efficiency strategies.
Portfolio of smart grid technologies can be incorporated into the optimization
framework as another sub-sector within the power sector to determine its optimal share
among the sub-sectors, which can then lead to a suitable transition framework.

Choosing the right strategies is extremely important for reliable optimization
results. An analysis of the power system can generate likely strategies that need to be
taken up for increasing the system efficiency and reducing losses. The portfolio of
strategies can be chosen from those generated from such an analysis, which offer the
maximum potential for system improvement. If the most effective strategy portfolio is
designed based on a technical analysis, the effectiveness and reliability of optimization
results would improve considerably. This approach would incorporate further
optimization from an additional dimension, namely technology. Here the analysis of
the real power system generates the most effective technical strategies, which are then
optimized in terms of economic and implementation parameters by the hierarchical
multi-objective optimization algorithm.

This highlights the distinct advantages of the hierarchical approach compared to
other methodologies, namely, its modularity and flexibility. The application of the
optimality principle results in the reduction of a complex optimization problem into
smaller problems, solved sequentially. Additional modules can be added along different
dimensions to enhance the accuracy of computations by providing better backward or
forward linkages. When new technological options arise, they can be incorporated into
the optimization framework either as additional strategies in an existing portfolio or as
new portfolios without changing the basic optimization structure. Similarly, when the
relative prospects of existing options undergo change on account of technology
advancement, they can be incorporated in the revised parameter values.

The methodology is general in nature and can be employed in other sectors of the
economy as well. Subject to availability of reliable mappings from the domain of inputs
to outputs, hierarchical optimization procedures can be extended to optimize all the
sectoral strategies of the economy. For example, if the expenditure in the social sectors
can be mapped onto return functions such as Human Development Indices and then to
development goals, the hierarchical optimization procedure can be employed to
identify optimal social sector strategies as well.

The methodology enables adoption of an evidence-based and transparent approach
to policy making. However, the reductionist approach to the complex modelling
problem, facilitated by the dynamic programming methodology, assumes additive
monotonic objective functions. Though this requirement is sought to be achieved by
the convergence of strategies/policies and objectives at various hierarchical levels, the
extent of satisfaction of the assumptions has direct bearing on the model accuracy.
Taking the process forward by incorporating the strategy portfolios of other sectors for
extension at economy level as well as assessing the impact of stochastic disturbances
are directions of future research, to expand and apply the method for economy wide
applications.
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Köhler, J., Grubb, M., Popp, D. and Edenhofer, O. (2006), “The transition to endogenous technical
change in climate-economy models: a technical overview to the innovation modeling
comparison project”, The Energy Journal, Vol. 27, pp. 17-55.

Lameira, V.J., Harris, J., Quelhas, O.L.G. and Pereira, R.G. (2011), “A study of the relationships
among three variables, character of governance, sustainable growth and energy
management”, Management of Environmental Quality: An International Journal, Vol. 23
No. 1, pp. 68-81.
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