
Electrical Power and Energy Systems 55 (2014) 13–20
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Optimization of India’s electricity generation portfolio using intelligent
Pareto-search genetic algorithm
0142-0615/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijepes.2013.08.024

⇑ Corresponding author. Tel.: +91 471 2439442; fax: +91 471 2326990.
E-mail address: joy.vazhayilp@gmail.com (J.P. Vazhayil).
Joy P. Vazhayil ⇑, R. Balasubramanian
Centre for Energy Studies, Indian Institute of Technology, Delhi 110 016, India

a r t i c l e i n f o
Article history:
Received 26 December 2011
Received in revised form 28 January 2013
Accepted 24 August 2013

Keywords:
Optimal generation mix
Mean variance portfolio optimization
Pareto-search genetic algorithm
Climate change mitigation in India
a b s t r a c t

Optimization of power generation mix is a significant strategy of climate change mitigation for countries
like India. This involves multi-objective optimization of cost reduction, emissions reduction and risk mit-
igation taking into account relevant constraints. We use a variant of portfolio optimization technique to
generate India’s 12th five year plan electricity generation portfolio taking into account the carbon costs.
For fitness evaluation of a generation portfolio, we use levelized generation costs and a Comprehensive
Risk Barrier Index (CRBI), the latter capturing the cost risks modulated by project implementation barrier
indices. For constrained optimization, we develop a fast hybrid algorithm, namely, Intelligent Pareto-
search Genetic Algorithm (IPGA), which systematically evolves successively efficient frontiers and finally
converges to the global Pareto-optimal front. This algorithm combines non-dominated sorting and sep-
arate elite population, while utilizing dual mode search for faster convergence and cluster reduction
strategy for enhancing diversity. Halting mechanisms have been proposed for local and global Pareto con-
vergence. We apply this generalized algorithm to simulate the impact of carbon costs, risks and barriers
on India’s optimal generation portfolio.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

New planning and risk management tools are important to re-
spond to uncertainty in climate change and the adaptation/mitiga-
tion policies of governments [1]. Optimization of energy strategy
portfolios is a critical component of such response. We have for-
mulated a methodology of hierarchical multi-objective optimiza-
tion of India’s energy strategy portfolios in this context [2,3].
Optimization of generation portfolio is a key component of the first
level optimization incorporated in this framework. Optimal gener-
ation planning is particularly important due to incorporation of
Renewables Portfolio Standards, which is fast emerging as a signif-
icant constituent of power generation portfolio worldwide. Despite
this trend, according to the projections of IPCC, the energy mix
supplied to run the global economy in the 2025–30 timeframe will
essentially remain unchanged, with more than 80% of energy sup-
ply based on fossil fuels [4]. As far as India is concerned, coal will
remain the mainstay of power generation during the 12th Plan
(2012–2017) providing at least 50% base load power, though
renewables’ share is growing steadily as mandated by the Electric-
ity Act, 2003.

Though renewables contribute 13% of global energy consump-
tion [5] today, most involve unsustainable uses of wood or hydro-
power with only 2% share of green new renewables and 6% nuclear.
Distributed generation using renewables or otherwise, has a num-
ber of advantages. The primary drivers of advancing distributed
generation [6] are limiting greenhouse gas (GHG) emissions, avoid-
ance of new transmission circuits and large generating plants, risk
reduction in electricity markets, improved power quality, reliabil-
ity and enhanced energy security. More than doubling of the
renewable energy generation in India is projected during the cur-
rent decade [7] accounting for 25% of the total energy consumed
by the year 2020–21.

Optimal generation planning with renewables in the portfolio is
an important strategy of climate change mitigation [8]. There are
various approaches to this optimization problem. Ref. [9] arrives
at an optimal generation mix for Malaysia using two-phase K-best
dynamic programming trade-off method, comparing coal, nuclear,
solar thermal and biomass technologies based on three criteria,
namely, economic cost, reliability and socio-environmental cost.
Ref. [10] presents a compromise model for optimal generation
mix calculations. A fuzzy linear programming optimization ap-
proach for generation planning in India for the year 2020 is indi-
cated in [11] and analytic hierarchy process is employed for
green energy sources selection in [12].

Mean variance portfolio theory has been applied to the Irish
electricity sector in [13]. A multi-parametric quadratic program-
ming technique is described for fast computation of portfolio prob-
lems in [14]. California Energy Commission [15] uses levelized cost
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estimates including carbon costs along with risks to assess the cli-
mate change impact of generation technologies. However, in the
context of a developing country like India, barriers to project
implementation are as important as cost risks while planning
capacity augmentation. We, therefore, propose a modified ap-
proach where we generate a composite index, namely, Compre-
hensive Risk Barrier Index (CRBI) and use it along with levelized
costs to generate efficient frontiers. To implement constrained
optimization, we devise a generalized genetic algorithm and opti-
mize India’s 12th five year plan electricity portfolio taking into ac-
count the impact of carbon costs.

2. Optimization approach for generation planning

Generally, countrywide policies have multiple objectives. Mul-
ti-criteria decision-making (MCDM) methods in an integrated
assessment framework offer a better alternative to cost/benefit
and similar methods [16]. Since bi-objective optimization is easy
to visualize and does not require computation of surfaces, it is pro-
posed for generation planning, the twin objectives of which have to
be carefully selected. Essentially, the first will be financial/eco-
nomic cost criterion and the second would relate to policy/project
implementation focusing on the quantification of risks and barri-
ers. Portfolio optimization techniques [14,17–19] can be employed
using these twin criteria to generate a Pareto-optimal portfolio.

Portfolio optimization is a bi-objective problem of maximizing
portfolio return and minimizing portfolio risk. Risk is estimated
by evaluating the standard deviation of the portfolio return, as in
the case of Sharpe ratio [20], though there are several ways of
defining risk [21]. For generation planning, we use portfolio level-
ized cost and risk to formulate a minimization problem. For a port-
folio, cost and standard deviations are computed by the matrix
equations,

Portfolio Cost; f 1ðXÞ ¼ Expectation of cost vector ¼ XTC ð1Þ

C ¼ Column vector of levelized costs

X ¼ Column vector of weights

Portfolio standard deviationðriskÞ; f 2ðXÞ ¼ ðX
TRXÞ0:5 ð2Þ

R¼Covariance matrix

¼

r1 0 . . . . . . 0
0 r2 . . . . . . 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .
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ri ¼ Standard deviation of the ith elementðriskÞ
qij ¼Correlation coefficient between ith and jth elements:

ð3Þ

The mean variance portfolio optimization problem can then be
stated as:

Minimize f 1ðXÞ; f 2ðXÞ
subject to g1ðXÞ; g2ðXÞ . . . ; gkðXÞ � 0;

with x 2 S; S 2 Rn being the decision variable space:

ð4Þ
3. Comprehensive risk barrier index (CRBI)

Apart from the risks associated with each cost component, there
are barriers in implementing projects especially in the context of a
developing country like India. We use a comprehensive risk barrier
index (CRBI) to indicate the combined impact of risks and imple-
mentation barriers associated with each portfolio. While risk
parameters are estimated using the standard deviations of the
respective costs, multi-criteria ranking methods [22] can be used
to evaluate the barrier indices. Analytic hierarchy process (AHP)
[23,24] has been selected in this work which is an important mul-
ti-attribute weighting method making use of pair-wise comparison
matrices estimated based on expert judgments. AHP has been
implemented using Web HIPRE software [25] to obtain the Perron
vector (principal eigenvector) of the reciprocal comparison judg-
ment matrix. We use the consistency measure of this matrix as
in Web-HIPRE [26]. Risk and barrier indices are then integrated
into a composite index by a suitable combination function. The
estimated portfolio cost and portfolio CRBI give the fitness indica-
tion of a particular generation portfolio as against its competitors,
to be employed as inputs to the bi-objective minimization
problem.

We consider the following barrier profiles in the Indian
scenario:

(i) Land availability barrier.
(ii) Public policy support/barrier.

(iii) Environmental clearance barrier.
(iv) Infrastructure and resource availability barriers.
(v) Grid connection and market barriers.

In the AHP, the priority vector for each of the barriers is com-
puted using the pair-wise comparison matrix. Individual barrier
priority vectors are combined to compute the overall barrier index
vector for all energy technologies. If the barrier importance column
vector is B, and the matrix of barrier priority vectors is A, then the
overall barrier index vector for various energy technologies, P is gi-
ven by:

P ¼ AB ð5Þ

Portfolio barrier index; B ¼ XTP ð6Þ

The risk and barrier indices can now be aggregated to form the
comprehensive risk barrier index (CRBI) using a suitably weighted
risk-barrier combination function. CRBI is an index which captures
the combined impact of the risk and barrier random variables. A
proportionality function of these independent variables is the sim-
plest approach to capture this impact, though a variety of tele-
scopic functions are possible to accentuate or reduce the impact
of each at various regions of the domain. This is the choice to be
exercised by the policy maker as to what kind of relative functional
priorities need to be attached to the risk and barrier profiles. The
simple product function could be replaced by other choices such
as b2r, br2, b2r + br2 etc. where b is the barrier random variable
and r is the risk random variable. In this analysis, we utilize the
product function of the risk and barrier indices to generate CRBI.

Portfolio CRBI ¼ K � ðPortfolio barrierÞ � ðPortfolio riskÞ

¼ K � ðXTPÞ � ðXTRXÞ0:5 ð7Þ

where K is a positive constant.

4. Intelligent Pareto-search Genetic Algorithm (IPGA)

Though there are analytical approaches to solve optimization
problems, heuristics such as Genetic Algorithm are especially use-
ful for hard problems. Genetic algorithms are intrinsically parallel
due to which they can generate a number of near-optimal solu-
tions. They have been gainfully employed in many power sector
problems such as economic dispatch [27,28], electric load forecast-
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ing [29] and distribution systems configuration [30] etc. The pres-
ent example is part of the hierarchical multi-objective optimiza-
tion of India’s energy strategies. Since the optimal vectors of the
first level are subjected to further optimization at higher levels
using macrolevel objective functions, it is important to generate
a number of near optimal solutions at lower levels to feed into
the optimization process at higher levels. Genetic algorithms fulfill
this requirement of making available many solutions for the policy
maker. Another reason for the suitability of genetic algorithms is
the complexity of the fitness function including CRBI. For evolving
correct policy strategies, it is required to consider many fitness
functions or their variations, as in the present study. These are eas-
ily implemented in a GA heuristic.

We develop a genetic algorithm using evolutionary processes to
carry out the portfolio optimization. NSGA-II and SPEA are two ge-
netic algorithms [31] which can be employed for multi-objective
optimization. Intelligent Pareto-search Genetic Algorithm (IPGA),
proposed for the first level of the hierarchical multi-objective opti-
mization approach, is a new hybrid combining non-dominated
sorting feature of NSGA-II and separate elite population feature
of SPEA and adding original novel features such as intelligent Par-
eto-search or dual mode search, Pareto-convergence test, and new
cluster reduction strategy. Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) applies non-dominated sorting/selection proce-
dures to the combined parent and offspring populations to form
the population of the next generation [32]. A crowded distance-
based niching strategy is used to ensure diversity in the selection
process. The Strength Pareto Evolutionary Algorithm (SPEA) main-
tains a separate elite population as a repository of the best solu-
tions found up to a particular generation [33,34]. Diversity
enhancement techniques are employed in the selection of elite
population. SPEA has been found to provide a better optimal solu-
tion compared to Particle Swarm Optimization–Fuzzy satisfaction
maximization approach [35].

Reproduction and crossover operators are critical for the suc-
cess of genetic algorithms [36]. In IPGA, these processes are effec-
tively utilized for the exploration and exploitation of the search
space. This algorithm ensures convergence by applying a system-
atic procedure to generate the global Pareto-optimal front. The
advantages of this algorithm over the conventional algorithms are:

(i) It combines non-dominated sorting technique in NSGA and
the elite preservation in SPEA.

(ii) It incorporates an efficient cluster reduction strategy to
ensure diversity while selecting the elite population.

(iii) It incorporates a dual mode search strategy for efficient
exploration and exploitation of the search space for progres-
sively advancing to the global Pareto-optimal front. Explora-
tion strategy first generates a non-dominated elite front
from the current test population and then applies genetic
operators of reproduction, crossover and mutation to the
population to locate at least one point which dominates all
the previous elite solutions. If such a point is found, then
the exploitation strategy is employed to generate a non-
dominated elite front around the identified point, using a
combination of reproduction and mutation operators
applied to the test population.

(iv) It provides a systematic approach for convergence to the
local and global Pareto-optimal fronts with a halting mech-
anism. If in sufficiently large number of iterations, the effi-
cient frontier obtained thus far is not superseded by a
dominating member so that the cluster reduction strategy
persists without interruption in all these iterations, it indi-
cates a local Pareto-optimal front. Global solutions are
obtained by generating a number of local fronts in random
search directions.
(v) The new approach makes the algorithm fast and efficient. In
IPGA, the computational complexity of non-dominated sort-
ing of the combined population is O{n(M + N)2}, where n is
the number of objectives, M, external population size and
N, elite population size. This is similar to the computational
complexity of NSGA-II and SPEA. But due to the intelligent
search strategy adopted for advancing the Pareto-front and
also due to the Pareto-convergence test incorporated in IPGA
requiring no extra-computations, IPGA is seen to converge in
less number of iterations.

5. Algorithm description

1. Generate the first non-dominated front from the initial
population of chromosomes. In the present case, each
chromosome consists of 20 random decimal digits with two
adjacent digits representing the proportion of each energy
technology. This decimal representation is converted to
percentages to form the proportion vector X in the decision
variable space.
1.1. We start with a random population of chromosomes RP

0

of size N and a random elite population EP
0 of size M such

that N/4 6M 6 N/3. Initially, we combine these two sets of
populations to create the combined test population
TP

0 ¼ RP
0UEP

0 of size (N + M) and assign fitness values to all
the members in terms of levelized cost and CRBI.
1.2. Apply non-dominated sorting procedure to TP

0 to
identify the hierarchy of non-dominated fronts Fi,
i = 1,2,3 . . .w, with Fw representing the last front consisting
of weeds. This sorting is carried out using the dominance
relation defined [31] as follows:

A solution x(1) is said to dominate another solution x(2), if both
of the following conditions are true, namely, (i) the solution
x(1) is no worse than x(2) in all objectives (ii) the solution x(1)
is strictly better than x(2) in at least one objective.

Now we generate the combined population CP
0 ¼ EP

0UF1 and

apply non-dominated sorting to the combined front CP
0 to

generate the first front G1. If G1 contains exactly M

members, these replace the elites in the set EP
0 to form the

next generation elite set EP
1. If it contains more than M

members, go to step 1.4.
1.3. If G1 has less than M members, apply intelligent
mutation to TP

0. The objective of this process is to exploit
the search space to generate a non-dominated front which
includes the members of G1. This involves the following:

1.3.1. Modify the test population TP
0 so that the members

of G1 not present in TP
0 are substituted in their positions

1.3.2. Replace in TP
0, 4 times the deficit, namely, 4 * (M-

Number of members of G1), by mutated members of G1 at
random positions other than those chosen in 1.3.1.
Mutation of each member is effected at four random
positions by four random decimal digits. Go to step 1.2.
1.4. If G1 has more than M members, cluster reduction
strategy is applied to G1 to choose the most diverse M

members to replace those in EP
0. This gives the next

generation elite front EP
1

1.5. The test population TP
0 is now subjected to an

evolutionary process by carrying out extensive genetic
operations of reproduction, crossover and mutation. In

(continued on next page)
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Fig. 1. Global Pareto-optimal Front in case of optimal generation mix.
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reproduction, the weed population (Fw) is replaced by elite
members. Mutation and crossover techniques are then
applied to randomly selected members of the subject
population. Weak mutation is applied at this stage to
reduce the interference noise between crossover and
mutation operators [37]. This procedure accomplishes the
exploration of the search space to identify whether better
non-dominated points are available. This yields the next
generation test population TP

1
2. Step 1 above completes one generation of the evolutionary

process. This process is now repeated from step 1.2
onwards using the second generation test population TP

1

and elite population EP
1. During repetition of the process,

testing takes place in each generation to check whether a
local Pareto-optimal front has been reached. This is tested
as follows:
2.1. In step 1.2 of the evolutionary algorithm, if at least one
point dominating all the solutions of the previous front is
found, it implies a Pareto-front improvement. This is tested
by checking whether G1 contains less than M members or
not, as a Pareto-front improvement will lead to less number
of members in the first front thereby avoiding the cluster
reduction step 1.4. Therefore, step 1.3 would be carried out
in that generation instead of step 1.4. If no such dominating
point with a Pareto-front improvement could be found
despite thorough exploration of the objective space in
sufficient number of predetermined steps, then the final
front obtained will be a local Pareto-optimal front.
Therefore, if step 1.3 is not executed at all in an integer
multiple of M + N continuous generations, then the elite
front obtained thereafter, namely, Ep

cðMþNÞ is taken as a local

Pareto-optimal front.
3. Now we proceed to generate the Global Pareto-optimal front.

This is achieved by a procedure identical to the generation of
a wave-front from a number of secondary wavelets. The
approach is to generate a few local Pareto-fronts in random
search directions and then combine them as follows
3.1. Generate M independent Pareto-optimal fronts by
repeating steps (1) and (2) and combine them to obtain the
seed population for the global Pareto-optimal front. Non-
dominated sorting is applied to this seed population to
obtain the first non-dominated front of this population. If it
has more than M members, it is taken as the global Pareto-
optimal front (Fig. 1). If not, generate more number of
independent Pareto-optimal fronts so as to increase the
number of members of the global Pareto-optimal front to
more than M.
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Fig. 2. (a) and (b): Cluster reduction using the ordering parameter.
6. Cluster reduction strategy

The cluster reduction strategy employed is as follows: The
points are plotted in the bi-objective space as in Fig. 2a. For each
point, compute the area of the rectangle whose diagonal is the line
segment joining the point to the next adjacent point. Both the end-
points are assigned sufficiently high area values. We select points
from the cluster based on their spread and frontier smoothness,
the former being evaluated by the rectangle area values and the
latter by a relative difference function. Accordingly, we define
the ordering parameter as the product of these variables.

Ordering parameterðOÞ ¼ L� B� ðLþ BÞ=jL� Bj ð8Þ

where L and B represent the length and breadth of the rectangle
respectively.
The points on the cluster are rearranged in the descending order
of the ordering parameter and the first M points are chosen from
the cluster. This strategy ensures that the most diverse points
within the cluster are preserved as elites while simultaneously
emphasizing the middle range points. Fig. 2a and b illustrate the
cluster reduction obtained through this method.
7. Pareto convergence test

An evolutionary algorithm using Pareto-based ranking and a
monotonic selection converges to the global optimum [38]. But
the problem is to determine whether the global optimum has been
reached. There are stopping criteria suggested in the literature, for
example, the rank histogram method [39], Kalman filter based evi-
dence accumulation of the improvement in Pareto-dominance
[40], Kalman filter based combination of three different indicators,
namely, hypervolume indicator, epsilon indicator and mutual
domination rate indicator [41] etc. The concept of e-dominance
has been developed [42] to combine convergence and diversity in
multi-objective optimization. The IPGA makes use of an iteration
based local Pareto-convergence test which requires no additional
computation as follows.

After the first set of elite population is generated, evolutionary
operators are applied to the test population CP

0 to search for points
which dominate the current elite population members. The test for
a Pareto-optimal front is that no point dominating the current non-
dominated front be found despite evolutionary operators being ap-



Table 1
Estimated generation Potential and achievements [45,46].

Energy technology Estimated
potential (MW)

Cumulative
achievement (MW)

Hydro 87,400 36,860
Wind 45,195 13,000
Small hydro 15,000 2953
Biomass (including bagasse

cogeneration)
21,881 2600

Waste to energy 2700 41

Table 2
Levelized costs of various energy technologies. Source: Authors’ estimates based on
[48,49].

Energy technology Levelized cost of energy ( /KW h)

Coal 3.00
Natural gas 4.50
Nuclear 3.30
Hydro 2.90
Wind 3.30
Small hydro 3.30
Biomass 3.80
Waste to energy 4.70
Solar thermal 17.00
Solar PV 15.00

Table 3
Proportion of cost components of various energy technologies. Source: Data adapted
from [15].

Energy
technology

Investment
cost (%)

Fuel
cost (%)

Operation and
maintenance cost (%)

Carbon
cost (%)

Coal 51.00 24.00 10.00 15.00
Natural gas 25.00 63.00 6.00 10.00
Nuclear 50.00 32.00 18.00 0.00
Hydro 96.00 0.00 4.00 0.00
Wind 80.00 0.00 20.00 0.00
Small hydro 70.00 0.00 30.00 0.00
Biomass 24.00 50.00 26.00 0.00
Waste to

energy
50.00 0.00 50.00 0.00

Solar
thermal

84.00 0.00 16.00 0.00

Solar PV 96.00 0.00 4.00 0.00
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plied for G generations where G P c(M + N) where c is a positive
integer. If at least one non-dominating point is found in any one
of these evolutionary generations, a new non-dominated front is
constructed around that point and again the test is applied until
successive G generations are unable to detect any dominating
points. This test indicates convergence to a local Pareto-optimal
front.

For a convex multi-objective optimization problem (where
objective functions are convex within a convex feasible region),
every locally Pareto-optimal solution is also globally Pareto-opti-
mal [43]. However, many problems are non-convex and hence glo-
bal Pareto-convergence should be sought for. Global Pareto-
convergence is obtained by means of a wave-front generation ap-
proach taking local Pareto-fronts as wavelets. We generate M sep-
arate local Pareto-fronts in random search directions and taking
the combined Pareto-front population as the seed population, its
first non-dominated front is generated. If the generated front con-
tains more than M members, then this non-dominated front is ta-
ken as the global Pareto-optimal front. If it contains less than M
members, then more local Pareto-fronts are generated to combine
with them until the global front contains more than M members.
8. Optimal generation mix for India

We apply the algorithm to estimate the optimal generation mix
for India’s 12th Five Year Plan. India has set a capacity addition tar-
get of about 100,000 MW for the 12th Five Year Plan [44] as against
the achievement of 62,374 MW during the previous Plan [45]. The
bi-objective optimization problem for this generation planning can
be stated as follows:

Let X = (x1,x2, . . .x10)T represent the vector indicating the pro-
portion of each source in the generation mix having ten energy
technologies. Let the costs associated with each source be repre-
sented by the cost matrix, C = (c1,c2, . . .C10)T. Let

P
be the

10 � 10 covariance matrix for these energy technologies. Then
the optimization problem is as follows:

Minimize Cost; CðXÞ¼XTC

Minimize CRBI; FðXÞ¼ ðXTPÞ � ðXT RXÞ1=2

XðLÞi � xi � xðUÞi ; i¼1;2; . . .10;Variable bounds
B¼Barrier index of a portfolioX

XðLÞ1 ¼50 and xðUÞ1 ¼100;

Minimum proportion of coal¼ 50%for base load

XðLÞ2 ¼3;Minimum proportion of gas¼3%for peak load

XðLÞi >0 for i¼3;4 . . .10;non-zero proportion of other energy technologies

XðUÞ4 ¼50;xðUÞ5 ¼32;xðUÞ6 ¼12;

XðUÞ7 ¼19;xðUÞ8 ¼2:7

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð9Þ

xðUÞi for i ¼ 4 to 8 have been generated from the potential esti-
mates (Table 1).

The decision variable vector X is represented by a chromosome
containing 20 decimal digits, with two consecutive digits repre-
senting the proportion of an energy technology which are then
converted into percentages. An international estimate of levelized
costs of energy is given in [47], assuming coal price of $2.50 per
MMBtu, natural gas price of $8.0 per MMBtu and 20 years eco-
nomic life. We use the levelized costs of various energy technolo-
gies in Table 2 for the analysis of power generation in India.

We use the data in Table 3 for the proportion of capital, fuel,
operation & maintenance and CO2 costs of various energy
technologies.

The risk values (standard deviations) of capital, fuel, operation
and maintenance and CO2 costs are given in Table 4.

The risk estimates in the above table are combined for each en-
ergy technology assuming that different cost components of a par-
ticular energy technology are uncorrelated which gives an identity
matrix as the correlation coefficient matrix. In order to arrive at the
portfolio risk, we combine the risk estimates of various energy
technologies using Eq. (2). The barrier index vector (P) for the en-
ergy technologies obtained through the analytic hierarchy process
(AHP) using Web-HIPRE is given in Table 5. The barrier index vec-
tor, P is generated using Eq. (5) assuming equal importance of
barriers.

Portfolio mean is arrived at using Eq. (1) and portfolio CRBI is
generated using Eq. (7). The bi-objective optimization yields at
least M Pareto-optimal points from which a posteriori selection is
made to locate the optimal generation mix. The decision criterion
for this selection is the minimization of a distance metric which
measures the deviation of the proposed 12th Plan mix from the ac-
tual achievement in the 11th Plan or the simulated results of 12th
Plan when deviations are compared. The distance metric (d) se-
lected is a Tchebycheff metric[43] in the decision variable space gi-
ven by:

d ¼ Min Max
i¼1;2;::10

jðxi� ziÞj

subject to x 2 S; S 2 Rn
ð10Þ

where x represents the solution vector and z represents the target
vector.

An alternative method of making selection from a set of Pareto-
optimal solutions is to use the Sharpe ratio [20] defined as follows:



Table 4
Risk values (standard deviations) of cost components of various energy technologies. (Source: Authors’ estimates based on [15]).

Energy technology Investment risk Fuel risk Operation and maintenance risk Carbon risk

Coal 0.09 0.06 0.05 0.26
Natural gas 0.06 0.10 0.04 0.26
Nuclear 0.54 0.46 0.40 0
Hydro 0.10 0.00 0.05 0
Wind 0.17 0.00 0.12 0
Small hydro 0.15 0.00 0.09 0
Biomass 0.62 0.10 0.81 0
Waste to energy 0.85 0.10 1.02 0
Solar thermal 0.98 0.00 0.20 0
Solar PV 0.79 0.00 0.20 0

Table 5
Barrier estimates based on AHP.

Energy
Technology

Land
availability

Public
policy

Environmental
clearance

Infrastructure and resource
availability

Grid connection and
market

Barrier Index vector
(P)

Coal 0.137 0.138 0.126 0.066 0.066 0.1066
Natural gas 0.07 0.243 0.063 0.078 0.066 0.1040
Nuclear 0.349 0.308 0.261 0.197 0.066 0.2362
Hydro 0.07 0.106 0.198 0.066 0.066 0.1012
Wind 0.039 0.031 0.025 0.066 0.215 0.0752
Small hydro 0.05 0.042 0.046 0.066 0.215 0.0838
Biomass 0.096 0.042 0.112 0.132 0.131 0.1026
Waste to energy 0.136 0.037 0.124 0.132 0.131 0.1120
Solar thermal 0.028 0.027 0.022 0.066 0.022 0.0330
Solar PV 0.025 0.027 0.022 0.132 0.022 0.0456

Table 6
Optimal 12th Plan Generation Mix with and without carbon cost.

Energy technology 11th Plan likely achievement Optimal 12th plan mix without carbon cost Optimal 12th plan mix with carbon cost

Coal 63.01 63.69 60.46
Natural gas 5.29 3.31 6.10
Nuclear 4.56 0.58 2.72
Hydro 11.1 13.98 10.78
Wind 12 10.95 10.68
Small hydro 1.35 5.48 5.12
Biomass 2.29 0.72 2.29
Waste to energy 0.18 0.14 0.22
Solar thermal 0.11 0.58 0.54
Solar PV 0.11 0.58 1.09

Table 7
Optimal 12th Plan generation mix for various scenarios.

Energy
technology

Optimal 12th plan mix
with min 6% natural gas
with carbon cost

Optimal 12th plan mix
with min 6% natural gas
without carbon cost

Optimal 12th plan
mix with min 3%
solar with carbon
cost

Optimal 12th plan mix
with min 3% solar
without carbon cost

Optimal 12th plan
mix with carbon cost,
risk and no barriers

Optimal 12th plan
mix with carbon cost,
barriers and no risk

Coal 59.28 61.48 57.97 61.84 59.64 59.91
Natural

gas
6.55 6.15 4.73 3.15 3.77 4.84

Nuclear 3.71 1.39 3.81 3.27 5.14 3.80
Hydro 10.59 10.32 11.43 12.22 10.38 6.11
Wind 10.04 10.90 10.05 11.08 10.17 11.06
Small

hydro
7.42 5.45 6.00 2.64 5.56 6.34

Biomass 1.20 2.78 2.89 2.64 3.98 4.49
Waste to

energy
0.11 0.35 0.12 0.13 0.31 2.19

Solar
thermal

0.55 0.58 1.50 1.51 0.52 0.69

Solar PV 0.55 0.58 1.50 1.51 0.52 0.58
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Fig. 3. Expected 11th plan achievement vs. optimal 12th Plan mix with carbon cost.
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Fig. 4. Optimal 12th Plan mix with and without carbon cost.
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Fig. 5. Optimal 12th Plan mix with minimum 3% solar with and without carbon
cost.
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Fig. 6. Optimal 12th Plan mix with minimum 6% natural gas with and without
carbon cost.

0
10
20
30
40
50
60
70

Coa
l

Natu
ral

 G
as

Nuc
lea

r
Hyd

ro
Wind

Small
 H

yd
ro

Biom
as

s

Was
te 

To E
ne

rgy

Sola
r T

he
rm

al

Sola
r P

V

G
en

er
at

io
n 

(G
W

)

Optimal 12th Plan mix with carbon cost, risk and no barriers
Optimal 12th Plan mix with carbon cost, barriers and no risk

Fig. 7. Optimal 12th Plan mix – risk only and barriers only scenarios.
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Sharpe Ratio ¼ ðr � r0Þ=r ð11Þ

where r is the return from the given portfolio, r0 the riskless (de-
sired) return, r is the standard deviation of the portfolio.

9. Results

The results of simulation obtained using IPGA are given in Ta-
bles 6 and 7 and Figs. 3–7. The 11th Plan likely achievement in Ta-
ble 6 has been estimated from [45].

10. Conclusions

This communication focuses on the application of portfolio
optimization concepts, suitably modified to include project barri-
ers in the context of a developing country like India, for optimal
generation planning. For this purpose, we define the concept of
comprehensive risk barrier index (CRBI) to incorporate the key
influence exerted by various barriers, in addition to risks, in the
execution of projects. Thus generation planning is not solely based
on the risks associated with the cost components, but also on the
barriers which determine the ease with which the project is com-
missioned and operated in its socio-economic environment. The
composite CRBI function incorporates the ground realities into
planning scenarios. While the risks are evaluated by the standard
deviations of cost components, barrier indices are estimated
through analytic hierarchy process applying pair-wise comparison
judgment matrices. The advantage of this construction is that it en-
ables evaluation of the impact of qualitative aspects relating to
project implementation in its local context, since these can also
be easily incorporated into the judgment matrices of AHP with
suitable consistency checks.

Having evolved an optimization model, we propose a genetic
algorithm for multi-objective optimization to achieve fast Pareto-
convergence and to handle various constraints including minimum
or maximum proportion of generation for a particular energy tech-
nology. The intelligent Pareto-search genetic algorithm (IPGA)
incorporates non-dominated sorting and maintains a separate elite
population. It advances the non-dominated front to a Pareto-opti-
mal front by using genetic operators ensuring the diversity of solu-
tions. Dual mode search is employed to build up a non-dominated
front from a few non-dominated points and then to locate more
efficient points which can advance the non-dominated front to a
Pareto-optimal front. This procedure ensures fast convergence by
efficient exploration and exploitation of the search space. Finally
it incorporates a simple mechanism to identify local Pareto front
and also to reach the global Pareto front. Among the global Pare-
to-optimal solutions, a particular solution is chosen by a suitably
designed criterion, say, its nearness to the 11th Plan achievement
or for sensitivity scenarios, to a simulated 12th Plan mix.
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The algorithm results in a number of Pareto-optimal solutions
from which suitable choices can be made based on practical con-
siderations. Various scenarios to study the impacts of carbon costs,
risks and barriers have been simulated. The analysis indicates that
for some projects like nuclear and hydro, barriers are more signif-
icant than risks while the reverse is true in respect of natural gas,
wind and waste to energy projects (Table 7). The impact of carbon
cost and risk is mainly on the coal, natural gas, nuclear and bio-
mass projects. Carbon cost has only marginal impact on the pro-
portion of solar power in view of its high cost. Therefore,
statutory minimum standards have to be prescribed for increasing
the use of renewables. The optimal scenario of minimum 3% solar
has been simulated which shows that carbon cost regime exerts a
positive influence in the form of a secondary incentive.

The optimization methodology proposed offers a comprehen-
sive approach for generation planning in the context of a develop-
ing country which can take care of multiple relevant factors while
incorporating various constraints. It offers flexibility and choice as
it suggests a range of optimal solutions. The algorithm is general in
nature and can be employed for a number of similar optimization
problems. The computation time required is reasonable and the
algorithm can be customized and implemented easily for complex
optimization scenarios.
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